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ABSTRACT: In this work we provide the findings of a forecast combination analysis

carried out on the realized volatility series of three market indexes (DAX, CAC, and

AEX). Two volatility types (5 minutes, kernel) have been considered. Different loss

functions suggest that forecasts computed through combining models are generally more

accurate than those provided by single models. However, the choice of the latter can

significantly affect the goodness of the results.
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Introduction

Volatility is a central parameter in many financial decisions, including the pricing and hedging

of derivative products as well as the development of efficient risk management methods. Most

of the volatility models presented in the literature are based on the empirical finding that

volatility is time-varying and that periods of high volatility tend to cluster (Ané, 2006).

The forecasting process of such an important measure represents a major issue.
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In the literature there exists a wide variety of models to forecast volatility forecasts,

but these are, almost by definition, simple and incomplete (Raviv, 2016). An improvement

in the forecast accuracy can be achieved by combining forecasts originating from different

types of models. Forecast combinations have been used successfully in empirical works in

different areas such as forecasting Gross National Product, currency market volatility, infla-

tion, money supply, stock prices, meteorological data, city populations, outcomes of football

games, wilderness area use, check volume and political risks (Timmermann, 2006).

The aim of this paper is to use both single and combined models to forecast the daily

realized volatility one step ahead for a one-year period. Thereafter we will compare predicted

values with actual data using a number of loss functions. To carry out our analysis, we have

used data on realized volatility of three market indexes (DAX, CAC, and AEX) for the period

2008 to 2016.

The remainder of the paper is organized as follows. Section 1 describes the data, the

models adopted, and the loss functions used for evaluating the different forecasts. Section 2

presents the results of the analysis while Section 3 concludes the paper.

1 Data and Methodology

This study focuses on the realized volatility of three European market indexes:

• DAX 30 (Deutsche Aktienindex 30 ) is a blue chip stock market index consisting of the

30 largest German companies trading on the Frankfurt Stock Exchange;

• CAC 40 (Cotation Assistée en Continu) represents a capitalization-weighted measure

of the 40 largest among the 100 companies with the highest market capitalizations on

the Euronext Paris;

• AEX (Amsterdam Exchange Index ) is a stock market index composed of Dutch com-

panies that trade on the Euronext Amsterdam; it includes 25 most frequently traded

securities on the exchange.

The time series of the indexes are provided by the Oxford-Man Institute of Quantitative

Finance by means of its own website (http://realized.oxford-man.ox.ac.uk/data). For each

asset, the dataset contains the realized volatility collected every 5 minutes, the realized kernel

volatility (in both cases denoted by rvt), and the daily returns (denoted by rt), covering the

period from January 1, 2008 to Dezember 31, 2016.

Three different models have been chosen to create the single forecasts:
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1. Asymmetric Multiplicative Error Model (AMEM) (Engle, 2002; Engle and Gallo, 2006),

which for a basic (1,1) order has the following structure:

rvt = µtξt

µt = ω + α1rvt−1 + β1µt−1 + γDt−1rvt−1 (1)

with ω > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1. Dt as a dummy variable that takes the value

of 1 if the rt < 0 and 0 otherwise;

2. Asymmetric Power Multiplicative Error Model (APMEM), which for the usual (1,1)

order is given by:

rvt = µtξt

µδt = ω + α1rv
δ
t−1 + β1µ

δ
t−1 + γDt−1rv

δ
t−1 (2)

with ω > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1, δ > 0. This model is a generalization of the

basic MEM and is strictly related to the Asymmetric Power ACD model (cf., Fernandes

and Grammig, 2006);

3. Asymmetric Heterogeneous AutoRegressive Model (AHAR), that is the HAR model

with a leverage effect term (Corsi, 2009):

rvt = c+ β(d)rvt−1 + β(w)rv
(w)
t−1 + β(m)rv

(m)
t−1 + γDt−1rvt−1 + ε

(d)
t (3)

where (d) stands for the time horizons of one day, [rv
(w)
t−1] is the weekly realized volatility,

which at time t is given by the average:

rv
(w)
t =

1

5

(
rv

(d)
t + rv

(d)
t−1d + · · ·+ rv

(d)
t−4d

)
(4)

and rv
(m)
t−1 is the monthly realized volatility which at time t is given by the average

rv
(m)
t =

1

22

(
rv

(d)
t + rv

(d)
t−1d + · · ·+ rv

(d)
t−21d

)
(5)

As a preliminary analysis, in Figure 1 we compare the forecasts obtained using the three

models mentioned above for the year 2016 (colored lines) with the actual values of the volatil-

ity (dashed black line) for the DAX 5-minute series. The chart shows that all models react

satisfactorily to positive peaks of volatility, whereas they are not able to achieve a suitable

degree of accuracy when volatility reaches a local minimum. This issue, which is common

also to the other observed time series, can be overcome by combining the forecasts of two
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models, as we will see later.

The combined methods are based on the following two combination models:

• comb1 model, based on a simple unconstrained ordinary least squares estimation of the

weights. The one-step-ahead forecast is given by

rvT (1) = α + β1f
(1)
T (1) + β2f

(2)
T (1) (6)

with f
(1)
T (1) and f

(2)
T (1) denoting, respectively, the first and second model forecasts;

• comb2 model, with the combination given by

rvT (1) = α + (β1 + δ1Dt−1)f
(1)
T (1) + (β2 + δ2Dt−1)f

(2)
T (1) (7)

which includes a dummy variable, Dt, that takes the value 1 if rvt is lower than rvt−1 and

0 otherwise. The ratio of this choice is given by considering that, as we have mentioned

before, the forecast of volatility is often far from the actual realized volatility while the

latter is decreasing.

1.1 Loss Functions

To compare the results of the combined schemes with those that can be obtained by exclu-

sively relying on a single model, we have computed three loss functions:

1. Mean Square Error(MSE), given by

MSE =

∑n
i=1 (rvT+i − rvT+i−1(1))2

n
(8)

with rvT+i being the observed value of the realized volatility and rvT+i−1(1) as the one

step ahead forecast for time T + i, i = 1, . . . , n;

2. Quasi-Likelihood(QLIKE), defined as

QLIKE =
1

n

n∑
i=1

[
rvT+i

rvT+i−1(1)
− ln

(
rvT+i

rvT+i−1(1)

)
− 1

]
; (9)

3. A new measure called Asymmetric MSE(AMSE), given by

AMSE =
1

n

n∑
i=1

(
1 +

(
εT+i

2

rvT+i

)m
I(εT+i > 0)

)
εT+i

2 (10)
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where εT+i = rvT+i − rvT+i−1(1). This measure is an extension of the MSE: each

term of the sum reduces to εT+i
2 when the indicator function is 0 (overestimation of

the volatility) and is given by
(

1 +
(
εT+i

2

rvT+i

)m)
εT+i

2 when the indicator function is 1

(underestimation of the volatility).

We decided to build up a new loss function for the evaluation of forecasts for two reasons.

First, as we have already said, AMSE is more suitable than MSE when it comes to assessing

forecasts that underestimate the volatility as it penalizes underestimation to a greater extent.

Second, it can be shown that AMSE is able to perform more reasonably than QLIKE, one of

the most widely used loss functions in the volatility forecasting literature (Patton, 2011).

Figure 2 displays a graphic comparison of QLIKE with MSE and two versions of its

asymmetric modification, the first with power term m = 1 and the second with m = 2. On

the x-axis we have depicted the relative deviations of the forecasts from the true value (which

amounts to 2 in this case), whereas on the y-axis we have represented the relative difference

of the loss functions between the cases of underestimation and overestimation of the same

size. As expected, MSE appears as a flat line because it is a symmetric loss function. In

contrast, QLIKE and AMSE start to rise almost immediately, particularly QLIKE which,

as evidenced by the sharp slope of the red line, is able to reach very high values. However,

the AMSE loss function appears distinctly smoother than QLIKE (especially when m = 1),

indicating that AMSE is well-balanced and also more regular than the QLIKE loss function.

For computing the forecast combinations, we start by splitting the data into an estimation

and training set and a test set. The former is again split into two parts, the first being used

to estimate the parameters of the model, the second (the training period) to estimate the

weights to be attributed to the single forecasts. The test set is used to evaluate the different

models. We have chosen to take into account two different training periods in our analysis:

a four-year training period and a three-year training period. For instance, with a four-year

training period, we estimate the parameters of the models using observations from January

2, 2008 to December 31, 2011, then compute one step ahead forecasts from January 2, 2012

to December 31, 2015; these forecasts are used to estimate the weights of the combinations;

finally, the one step ahead forecast for January 2, 2016 is produced. Then, we estimate

the parameters of the models using observations from January 3, 2008 to January 2, 2012,

compute one step ahead forecasts from January 3, 2012 to January 2, 2016 to estimate the

weights of the combinations, and the one step ahead forecast for January 3, 2016 is produced.

2 Comparisons among forecasting models

In this section we will show the results of our analysis. For each model we display the values

of the three loss functions mentioned above for both the forecasts and the observed values.
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Because two of the three single models we have used (AMEM and APMEM) are very similar

to each other, we present first a comparison between AMEM and AHAR, then between

APMEM and AHAR, along with the combined schemes we described in Section 1.

2.1 AMEM vs. AHAR

The order of the two single models is defined using the Ljung-Box test on the residuals of

the in-sample analysis of the two models. We have selected an AMEM (1,1) for the DAX

dataset, an AMEM (1,2) for CAC and AEX, and an AHAR with a second lag term (rvt−2)

for all datasets.

Table 1 shows the results for the first comparison, i.e., AMEM (1,1) and AHAR models,

along with combined forecasts, using DAX data. We can see that the comb2 model performs

very well for almost all indicators; only QLIKE prefers the AMEM (1,1) model.

The findings provided in Table 2 for the CAC dataset are very similar to those for the

DAX dataset. Indeed, there are only two differences: QLIKE prefers comb2 for rv kernel

with a training period of four years instead of AMEM (1,2); and AMSE with m = 1 prefers

the AMEM model for rv 5 minutes with a training period of three years, instead of comb2.

The results for the AEX dataset (Table 3) are not so different from the others. The

comb2 model predominates, but the AMEM (1,2) also performs well, particularly according

to QLIKE (in three cases out of four).

2.2 APMEM vs. AHAR

In this subsection we assess if a generalization of the AMEM basic model is able to improve

the accuracy of the combined forecasts. According to the Ljung-Box test, we use an APMEM

(1,1) for DAX and an APMEM (1,2) for CAC and AEX.

As shown in Table 4, we have observed an actual improvement in the combined forecasts.

Compared to the findings shown in Table 1, in 14 cases out of 16 the loss functions appoint

the smallest value to a combination. Even according to QLIKE, comb2 is preferred over

APMEM half the time.

As we expected, the improvement that occurred for the DAX dataset moving from AMEM

to APMEM holds for CAC as well, even if it is less significant. Indeed, the results shown in

Table 5 are almost the same as those that we see in Table 2 in terms of loss functions choices.

However, this time AMSE (m = 1) selects the comb2 model for all volatility measures and

training periods.

Observing the Table 6, we can gladly see that, compared to the Table 3, the transition from

AMEM to APMEM has caused a consiistency of the loss functions. Almost all loss functions
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suggest choosing comb2. The single model APMEM (1,2) thas has only been chosen with the

use of the by QLIKE statistic. Overall, these are the same findings that are seen in Table 5.

2.3 Accuracy of Forecasts

So far we have evaluated the available forecasts by means of the numerical values provided

by the loss functions. Before doing so, however, we need to assess if the forecast series are

different from a statistical point of view. To this end, we have used a conditional predictive

ability (CPA) test of Giacomini and White (2006) to make pair-wise comparisons among all

forecasting models (α = 0.05). The null hypothesis is that the two models under comparison

have the same predictive accuracy. Because comb2 has proved to be the best combination

scheme in most cases, we tested if it is more accurate than the other models as our alternative

hypothesis.

Tables 7-9 provide the findings of the analysis according to the three datasets. At first

glance, we observe some similarities among the comparisons. In more detail, we find that

the two combination schemes, comb1 and comb2, show the same equal conditional predictive

ability for all models, market indexes, types of realized volatility, or the training periods,

except for kernel estimates with a training period of four years using the CAC dataset.

Regarding the other comparisons, the alternative hypothesis was rejected for comb2 and

AMEM twice in DAX, once in CAC, and three times out of four in AEX. The same applies

for comb2 and APMEM. Finally, AEX data depict an equal forecast accuracy also between

comb2 and AHAR when rv 5 minutes with a three-year training period is involved. In all

other cases, the CPA test provides evidence that comb2 has a better predictive ability than

the other models.Tables 7-9 especially make it clear that comb2 outperforms AHAR in almost

all situations, except for the AEX case mentioned before.

3 Conclusions

In this paper, we demonstrate that an improvement in the accuracy of forecasts of a measure

of volatility, namely realized volatility, can be achieved by combining predictions originating

from several models. We forecast the daily realized volatility one step ahead for a one-year

period with three single models (AMEM, APMEM, AHAR) and two combinations (comb1,

comb2 ). Subsequently, we compare predicted values and actual data using a number of

loss functions. We find that combining the AHAR model with APMEM instead of AMEM

causes an enhancement in the quality of the forecasts computed using combination schemes,

especially the comb2 model, which proves to be the best model in most situations. This

finding holds for the DAX, AEX, and (to a lesser extent) CAC datasets, and for all training
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periods. However, after carrying out a CPA test to assess the forecasting accuracy, we found

that the comb2 model, in almost all cases, was as accurate as comb1 and, in half the cases,

as accurate as AMEM and APMEM. Furthermore, comb2 outperforms the AHAR model in

almost all situations, allowing us to reject the null hypothesis of equal unconditional predictive

ability.
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Figure 1: Comparison among observed realized volatility (5 minutes) for year 2016 and
AMEM (1,1), APMEM (1,1), and AHAR forecasts – DAX dataset.
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Figure 2: Comparison of MSE, QLIKE, AMSE (m=1,2) loss functions computed on a series
h of evenly spaced forecasts from 0 to 2.
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Table 1: Comparison of AMEM (1,1), AHAR, and combination schemes (smallest values in
bold) – DAX dataset.

MSE QLIKE

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,1) (1,1)

rv 5min
4 years 0.254 0.293 0.252 0.248 4.231 4.979 4.285 4.246
3 years 0.254 0.293 0.254 0.250 4.231 4.979 4.393 4.338

rv kernel
4 years 0.206 0.251 0.204 0.200 3.505 4.312 3.552 3.508
3 years 0.206 0.251 0.206 0.203 3.505 4.312 3.639 3.594

AMSE (m = 1) AMSE (m = 2)

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,1) (1,1)

rv 5min
4 years 0.271 0.316 0.271 0.268 0.257 0.298 0.255 0.251
3 years 0.271 0.316 0.273 0.270 0.257 0.298 0.257 0.254

rv kernel
4 years 0.217 0.267 0.216 0.212 0.207 0.254 0.206 0.201
3 years 0.217 0.267 0.218 0.215 0.207 0.254 0.208 0.204

Table 2: Comparison of AMEM (1,2), AHAR, and combination schemes (smallest values in
bold) – CAC dataset.

MSE QLIKE

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.243 0.292 0.241 0.239 3.809 4.660 3.845 3.836
3 years 0.243 0.292 0.243 0.242 3.809 4.660 3.884 3.891

rv kernel
4 years 0.240 0.295 0.238 0.233 3.855 4.810 3.889 3.834
3 years 0.240 0.295 0.239 0.236 3.855 4.810 3.925 3.895

AMSE (m = 1) AMSE (m = 2)

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.268 0.325 0.269 0.267 0.249 0.301 0.248 0.246
3 years 0.268 0.325 0.270 0.270 0.249 0.301 0.249 0.249

rv kernel
4 years 0.264 0.325 0.264 0.260 0.245 0.303 0.244 0.240
3 years 0.264 0.325 0.265 0.263 0.245 0.303 0.245 0.242
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Table 3: Comparison among AMEM( 1,2), AHAR, and combination schemes (smallest values
in bold) – AEX dataset.

MSE QLIKE

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.251 0.293 0.250 0.247 3.925 4.706 3.969 3.960
3 years 0.251 0.293 0.251 0.251 3.925 4.706 4.007 4.023

rv kernel
4 years 0.219 0.257 0.218 0.213 3.854 4.677 3.898 3.834
3 years 0.219 0.257 0.219 0.216 3.854 4.677 3.933 3.886

AMSE (m = 1) AMSE (m = 2)

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.288 0.343 0.289 0.287 0.263 0.313 0.263 0.261
3 years 0.288 0.343 0.290 0.291 0.263 0.313 0.264 0.265

rv kernel
4 years 0.241 0.286 0.241 0.237 0.224 0.266 0.224 0.218
3 years 0.241 0.286 0.242 0.239 0.224 0.266 0.224 0.221

Table 4: Comparison among APMEM (1,1), AHAR, and combination schemes (smallest
values in bold) – DAX dataset.

MSE QLIKE

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,1) (1,1)

rv 5min
4 years 0.249 0.293 0.248 0.245 4.165 4.979 4.177 4.156
3 years 0.249 0.293 0.250 0.247 4.165 4.979 4.267 4.232

rv kernel
4 years 0.203 0.251 0.202 0.198 3.464 4.312 3.469 3.429
3 years 0.203 0.251 0.203 0.200 3.464 4.312 3.546 3.506

AMSE (m = 1) AMSE (m = 2)

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,1) (1,1)

rv 5min
4 years 0.267 0.316 0.266 0.265 0.252 0.298 0.251 0.249
3 years 0.267 0.316 0.268 0.266 0.252 0.298 0.253 0.251

rv kernel
4 years 0.214 0.267 0.213 0.210 0.205 0.254 0.203 0.200
3 years 0.214 0.267 0.215 0.213 0.205 0.254 0.205 0.202
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Table 5: Comparison among APMEM (1,2), AHAR, and combination schemes (smallest
values in bold) – CAC dataset.

MSE QLIKE

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.246 0.292 0.243 0.240 3.833 4.660 3.880 3.855
3 years 0.246 0.292 0.245 0.242 3.833 4.660 3.931 3.913

rv kernel
4 years 0.241 0.295 0.239 0.234 3.865 4.810 3.903 3.840
3 years 0.241 0.295 0.241 0.236 3.865 4.810 3.948 3.903

AMSE (m = 1) AMSE (m = 2)

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.272 0.325 0.271 0.268 0.252 0.301 0.250 0.247
3 years 0.272 0.325 0.273 0.271 0.252 0.301 0.252 0.249

rv kernel
4 years 0.266 0.325 0.265 0.261 0.247 0.303 0.245 0.240
3 years 0.266 0.325 0.267 0.263 0.247 0.303 0.247 0.243

Table 6: Comparison among APMEM (1,2), AHAR, and combination schemes (smallest
values in bold) – AEX dataset.

MSE QLIKE

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.256 0.293 0.252 0.247 3.946 4.706 4.001 3.975
3 years 0.256 0.293 0.253 0.250 3.946 4.706 4.049 4.039

rv kernel
4 years 0.219 0.257 0.218 0.213 3.855 4.677 3.902 3.831
3 years 0.219 0.257 0.219 0.215 3.855 4.677 3.942 3.886

AMSE (m = 1) AMSE (m = 2)

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5min
4 years 0.292 0.343 0.293 0.288 0.267 0.313 0.266 0.261
3 years 0.292 0.343 0.294 0.292 0.267 0.313 0.267 0.264

rv kernel
4 years 0.241 0.286 0.242 0.237 0.224 0.266 0.224 0.219
3 years 0.241 0.286 0.242 0.239 0.224 0.266 0.225 0.221
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Table 7: Percentage of superiority in forecasting accuracy of comb2 using CPA test (pair-wise
comparisons against AMEM, APMEM, AHAR and comb1 ) – DAX dataset.

f1 f2
DAX rv 5 min. DAX rv 5 min. DAX rv kernel DAX rv kernel
4 years t.p. 3 years t.p. 4 years t.p. 3 years t.p.

comb2 AMEM 0.016 0.178 0.007 0.129
comb2 AHAR 0.004 0.015 0.002 0.007
comb2 comb1 0.119 0.170 0.076 0.127

comb2 APMEM 0.015 0.156 0.005 0.096
comb2 AHAR 0.003 0.009 0.002 0.005
comb2 comb1 0.130 0.193 0.076 0.113

Table 8: Percentage of superiority in forecasting accuracy of comb2 using CPA test (pair-wise
comparisons against AMEM, APMEM, AHAR and comb1 ) – CAC dataset.

f1 f2
CAC rv 5 min. CAC rv 5 min. CAC rv kernel CAC rv kernel
4 years t.p. 3 years t.p. 4 years t.p. 3 years t.p.

comb2 AMEM 0.036 0.142 0.006 0.034
comb2 AHAR 0.000 0.001 0.000 0.000
comb2 comb1 0.187 0.397 0.046 0.161

comb2 APMEM 0.044 0.107 0.008 0.036
comb2 AHAR 0.000 0.001 0.000 0.000
comb2 comb1 0.132 0.212 0.041 0.120

Table 9: Percentage of superiority in forecasting accuracy of comb2 using CPA test (pair-wise
comparisons against AMEM, APMEM, AHAR and comb1 ) – AEX dataset.

f1 f2
AEX rv 5 min. AEX rv 5 min. AEX rv kernel AEX rv kernel
4 years t.p. 3 years t.p. 4 years t.p. 3 years t.p.

comb2 AMEM 0.074 0.538 0.024 0.153
comb2 AHAR 0.035 0.076 0.007 0.017
comb2 comb1 0.217 0.764 0.065 0.104

comb2 APMEM 0.051 0.233 0.024 0.135
comb2 AHAR 0.024 0.052 0.006 0.014
comb2 comb1 0.171 0.484 0.078 0.144


