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ABSTRACT: Investors typically use the Black-Scholes (B-S) parametric model

to value financial options. However, there is extensive empirical evidence that

the B-S model, assuming constant volatility of stock returns, is far from ade-

quate to price options. This paper, using nonparametric regression, incorporates

a volatility-adjusting mechanism into the B-S model and prices options on the

S&P 500 Index. Specifically, the upgraded B-S model, referred to as the B-S non-

parametric model, is equipped with such a mechanism whose function is to assign

larger volatilities for larger log returns and smaller volatilities for smaller log re-

turns to characterize volatility clustering, a phenomenon such that large/small

log returns tend to be followed by large/small log returns. Using the B-S nonpara-

metric models as a yardstick, our simulation results show that, across the board,

the B-S parametric model considerably overprices both call and put options.

JEL classification: C14, C15, G13.

Keywords: Black-Scholes Parametric Model, Black-Scholes Nonparametric Mod-

els, Index Options, Volatility, Kernels.

1 Introduction

An index option is an option that gives the holder the right, but not the obligation, to

buy or sell the value of a market index at a stated exercise price. Index options are cash-
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settled and mostly European-style, meaning that they settle with an exchange of cash on

the expiration date and have no provision for early exercise. A popular index option is on

the S&P 500 Index (ticker SPX), which is actively traded on the Cboe Options Exchange1

and has an expiration of up to 12 months.

This research is about pricing index options. Conventionally, when pricing options,

financial economists express the dynamics of the underlying asset price (say zt) in para-

metric form as an Ito stochastic differential equation with drift µ[·] and volatility σ[·] as
follows:

dzt = µ[·]dt+ σ[·]dBt (1)

where Bt is a standard Brownian motion. Although the parametric formulation of the

underlying asset price dynamics zt has the advantage of analytic tractability, a potentially

serious problem with such formulation is misspecification for the volatility. In practical

applications, a misspecification for σ[·] can lead to systematic pricing errors for options

driven by zt.

As a case in point, the well-known Black-Scholes (B-S) (1973) parametric model has

generally been accepted as the standard method for pricing options on stocks, market

indices, and futures contracts. The B-S parametric model was developed on the assump-

tion that the stock price dynamics Pt follow Equation (1) with µ[·] = µPt and σ[·] = σPt.

That is,

dPt

Pt

= µdt+ σdBt (2)

or

d logPt =

(
µ− σ2

2

)
dt+ σdBt (3)

Commonly referred to as the geometric Brownian motion (GBM), Equation (2) or

Equation (3) implies that the volatility σ of stock returns is constant over the life of the

option. However, numerous empirical studies (see Blattberg and Gonedes, 1974; Casta-

nias, 1979; Christie, 1982; MacBeth and Merville, 1979) have claimed that the volatility

of stock returns is far from constant. To illustrate this claim, let daily log return st be

defined as st ≡ log(Pt) − log(Pt−1) and let us employ |st − st−1| as a proxy measure for

volatility. Using 10-year daily log return data of the S&P 500 Index from 2012 to 2021,

we plot a scatter diagram between |st − st−1| and st. Somewhat in the shape of a funnel,

the scatter diagram in Figure 1 shows that |st − st−1| becomes larger as st moves both

positively and negatively away from the mean of daily log returns – a phenomenon sug-

gestive of volatility clustering. Volatility clustering (see Brooks, 2019; Cont, 2007) is that

large returns (of either sign) are expected to follow large returns, and small returns (of

1The exchange, founded in 1973, was originally called the Chicago Board Options Exchange.



Econometric Research in Finance • Vol. 7 • No. 1 127

Figure 1: A scatter diagram between |st − st−1| and st based on the S&P 500 Index

either sign) to follow small returns. Hence, the B-S parametric model, assuming constant

volatility of stock returns as in Equation (3), is clearly inappropriate for pricing options

on stocks or market indices.

To deal with this constant-volatility problem, this study, using nonparametric regres-

sion, incorporates a volatility-adjusting mechanism into the B-S model and values options

on the S&P 500 Index. Specifically, the upgraded B-S model, referred to as the B-S non-

parametric model, is equipped with such a mechanism whose function is to assign larger

volatilities for larger |st| and smaller volatilities for smaller |st| to characterize volatility

clustering. In Section 2, using daily log return data of the S&P 500 Index from 2012

to 2021, we will estimate nonparametrically these different values for the volatility σ in

Equation (3) by means of the well-established Nadaraya-Watson (N-W) estimator2.

Given the dependence of the volatility σt on the log return st (which in turn depends

on time t) in our nonparametric formulation, Equation (3) can be expressed in discrete

form under the risk-neutral probability3 as follows:

logPt − logPt−1 =

(
rf −

σ2
t

2

)
∆t+ σtϵt

√
∆t (4)

where rf is the short-term risk-free interest rate, ϵt is a standard normal variate, and ∆t

is the time change from t− 1 to t.

2See Fan (2005); Ghosh (2018); Nadaraya (1964); Ullah and Pagan (1999); Watson (1964).
3The risk-neutral probability, not the original probability, is relevant for pricing options.
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A major issue with nonparametric regression estimation is the choice of a kernel,

which is a weight function incorporated into the regression estimator. Introduced first by

Rosenblatt (1956), a kernel is a non-negative, real-valued, symmetric functionK such that∫ +∞
−∞ K(v)dv = 1. Although K is a probability density function, it is simply an effective

way for calculating a weighted average and does not imply that the random variable v is

distributed according to K(v).

Table 1: Some commonly used kernel functions

Kernel K(v) Support

Biweight 15
16

(
1− v2

)2 |v|≤1
Cosine π

4 cos
(
π
2 v

)
|v|≤1

Epanechnikov 3
4

(
1− v2

)
|v|≤1

Gaussian 1
h
√
2π

exp
(

−v2

2h2

)
−∞ < v < +∞

Logistic 1
2+ev+e−v −∞ < v < +∞

Triangular (1− |v|) |v|≤1

Tricule 70
81

(
1− |v|3

)3 |v|≤1

Triweight 35
32

(
1− v2

)3 |v|≤1
Uniform 1

2 |v|≤1

Note: exp stands for the exponential function.

Figure 2: The three kernel functions used: Gaussian, Epanechnikov, and Biweight

There are many kernel functions4 proposed for nonparametric estimation, some of

which are listed in Table 1. In this study, we try out three popular kernels (see Figure 2):

4See Fan and Yao (2003); Henderson and Parmeter (2015); Horowitz (2009); Li and Racine (2007).
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the Gaussian, the Epanechnikov (1969), and the Biweight. Each of these kernels will be

used to generate volatility estimates for the B-S nonparametric models. Given that a

kernel plays an important part in nonparametric regression estimation, the goal of this

study is to investigate, through simulation, the differences in index option prices between

the B-S parametric model in Equation (3) and the B-S nonparametric models incorporated

each with a kernel mechanism.

The rest of this paper is organized as follows. Section 2 introduces nonparametric

regression and describes the Nadaraya-Watson estimators incorporated each with one of

the three kernels. In Section 3, we lay out our simulation procedure in detail. Section 4

presents and discusses the option prices under the B-S parametric model and the three B-S

nonparametric models incorporated each with a kernel mechanism. Section 5 concludes

this research.

2 Nonparametric regression

2.1 An introduction

Suppose we wish to model a relation between two variables X and Y . In linear regression,

having observed X, the average value of Y is obtained by the regression line. In many

applications, however, we do not have adequate information to prespecify a linear rela-

tionship between X and Y . In these situations, we can resort to nonparametric regression

to capture a wide variety of nonlinear relations between the two variables.

Specifically, in nonparametric regression, we want to determine a relation between X

and Y such that

Yt = f [Xt] + at (5)

where at is a zero-mean error term process and f [·] is a smooth but unknown function.

We wish to estimate f [·] at a specified time for which X = x. Suppose that at X = x

we can have m repeated independent observations y1 < y2 < · · · < ym. Then a rough

estimator of f [·] at X = x is

f̂ [x] =
1

m

m∑
t=1

yt =
1

m

m∑
t=1

{f [x] + at} = f [x] +
1

m

m∑
t=1

at (6)

By the law of large numbers, the average of a′ts converges to 0 as m increases. Hence, the

average f̂ [x] = 1
m

∑m
t=1 yt is a consistent estimator of f [x].

For time series data, it is not possible to obtain repeated independent observations for

which X = x. However, if the function f [x] is adequately smooth, the values of Y for

which X is near x will provide a close approximation of f [x] and those for which X is

further away from x will provide less close approximation of f [x]. Hence, if we incorporate

a weight function w(·) into f̂ [x] = 1
m

∑m
t=1 yt, then such a weighted average of the Y ’s is
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better than the simple average of the Y ’s in Equation (6) to estimate f [·]. Hence, for any
given xi (where i = 1, 2, . . . , n), a better estimator of f [·] can be expressed as

f̂ [xi] =
1

m

m∑
t=1

wt(xi)yt (7)

Although nonparametric regression5 requires few assumptions about the nature of the

underlying data, it is highly data-dependent and is generally not effective for small sample

sizes. Härdle (1990) pointed out four important reasons for the nonparametric approach

to estimating a regression function.

First, it provides a versatile method of exploring a general relationship between two

variables. Second, it gives predictions of observations yet to be made without reference

to a fixed parametric model. Third, it provides a tool for finding spurious observations

by studying the influence of isolated points. Fourth, it constitutes a flexible method of

substituting for missing values or interpolating between adjacent values of the explanatory

variable.

2.2 Nadaraya-Watson estimators with the three kernels

A key function of a nonparametric estimator is smoothing. By incorporating a kernel

function into an estimator, nonparametric regression is a useful technique to deal with

the amount of smoothing in a set of data. A kernel K has to satisfy two conditions:

K(v)≥0 and

∫
K(v)dv = 1 (8)

By rescaling K using a variable h > 0, which is referred to as the bandwidth, the rescaled

kernel becomes

Kh(v) ≡
1

h
K

(v
h

)
and

∫
Kh(v)dv = 1 (9)

Given Equation (9), Nadaraya (1964) and Watson (1964) suggested the following weight

function wt(x) in Equation (7):

wt(xi) =
Kh [xi − xt]

1
m

∑m
t=1Kh [xi − xt]

(10)

If the bandwidth h is small, the average or smoothing will be calculated over a small

neighborhood around each of the x′
ts. If h is large, the averaging will be calculated over

a large neighborhood around each of the x′
ts. Hence, adjusting the amount of smoothing

is simply changing the bandwidth.

Substituting the weight function in Equation (10) into Equation (7), we obtain the

following Nadaraya-Watson estimator ĝ[xi] of g[xi] ≡ E [yt|xi] for an arbitrary xi (where

5See Fan and Yao (2003); Henderson and Parmeter (2015); Horowitz (2009); Li and Racine (2007).
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i = 1, 2, . . . , n):

ĝ[xi] =

∑m
t=1Kh [xi − xt] yt∑m
t=1 Kh [xi − xt]

(11)

A feature of the N-W estimator in Equation (11) is that it is a weighted sum of those y′ts

that correspond to xt in a neighborhood of xi. The weights are small for x′
ts far away from

xi and large for x′
ts closer to xi. Given the kernels in Table 1, we obtain the following N-W

estimators incorporated with the Gaussian, the Epanechnikov, and the Biweight kernels,

respectively.

ĝG[x] =

∑m
t=1 exp

[
−(x−xt)

2

2h2

]
yt∑m

t=1 exp
[
−(x−xt)

2

2h2

] (12)

ĝE[x] =

∑m
t=1

[
1− (x−xt)

2

h2

]
yt∑m

t=1

[
1− (x−xt)

2

h2

] (13)

ĝB[x] =

∑m
t=1

[
1− (x−xt)

2

h2

]2
yt∑m

t=1

[
1− (x−xt)

2

h2

]2 (14)

As suggested by many studies (see Henderson and Parmeter, 2015; Scott, 2015; Silverman,

1986), we use the following simple-but-popular rule for the bandwidth:

h = σ̂

(
4

d+ 2

) 1
d+4

n
−1
d+4 (15)

where σ̂ is the overall standard deviation estimate of the variable, d is the dimension of

the variable, and n is the number of observations. We use st ≡ log(Pt) − log(Pt−1) =

daily log return on the S&P 500 Index from 2012 to 2021 for estimation. With d = 1,

σ̂ = 0.01046, n = 2,516, the bandwidth based on Equation (15) is 0.00231.

Table 2 reports the three types of annualized N-W estimates for the volatility, ob-

tained through estimation using the N-W estimators in Eqs. (12), (13), and (14), for

different daily log returns from −0.05 to 0.05, a range wide enough to accommodate ba-

sically all possible values of daily log return st. In terms of magnitude, the differences

between the volatilities generated by the three kernels are not large. For any st value,

the Biweight kernel generates the largest volatility, followed by the Gaussian kernel and

then the Epanechnikov kernel. For example, when st = 0.002, the annualized volatility is

0.0887 under the Biweight kernel, 0.0860 under the Gaussian kernel, and 0.0651 under the

Epanechnikov kernel. Figure 3 gives a graphical exposition of the annualized N-W esti-

mates for the volatility in Table 2 based on the three kernels. The three curves look rather

similar — with larger volatility estimates for large |st| and smaller volatility estimates for

small |st|. This is a phenomenon of volatility clustering (see Brooks, 2019; Cont, 2007), a
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Table 2: Annualized N-W estimates for the volatility of asset returns

st σ̂g σ̂e σ̂b st σ̂g σ̂e σ̂b

−0.050 0.2594 0.2381 0.2828 0.002 0.0860 0.0651 0.0887
−0.048 0.2472 0.2300 0.2751 0.004 0.0842 0.0673 0.0852
−0.046 0.2350 0.2221 0.2680 0.006 0.0850 0.0735 0.0821
−0.044 0.2264 0.2135 0.2612 0.008 0.0886 0.0803 0.0779
−0.042 0.2186 0.2059 0.2553 0.010 0.0927 0.0858 0.0851
−0.040 0.2100 0.1978 0.2468 0.012 0.0970 0.0922 0.1009
−0.038 0.2021 0.1905 0.2367 0.014 0.1020 0.0983 0.1112
−0.036 0.1941 0.1825 0.2291 0.016 0.1061 0.1049 0.1238
−0.034 0.1867 0.1752 0.2239 0.018 0.1112 0.1119 0.1340
−0.032 0.1790 0.1679 0.2125 0.020 0.1155 0.1186 0.1464
−0.030 0.1722 0.1606 0.2011 0.022 0.1208 0.1252 0.1556
−0.028 0.1649 0.1499 0.1940 0.024 0.1258 0.1316 0.1660
−0.026 0.1572 0.1438 0.1805 0.026 0.1319 0.1389 0.1733
−0.024 0.1500 0.1374 0.1750 0.028 0.1375 0.1459 0.1805
−0.022 0.1429 0.1293 0.1643 0.030 0.1433 0.1526 0.1871
−0.020 0.1368 0.1249 0.1520 0.032 0.1493 0.1593 0.1950
−0.018 0.1325 0.1183 0.1449 0.034 0.1555 0.1663 0.2049
−0.016 0.1283 0.1113 0.1374 0.036 0.1617 0.1740 0.2125
−0.014 0.1238 0.1049 0.1290 0.038 0.1688 0.1813 0.2179
−0.012 0.1187 0.1020 0.1241 0.040 0.1752 0.1877 0.2238
−0.010 0.1133 0.0941 0.1219 0.042 0.1814 0.1944 0.2303
−0.008 0.1080 0.0884 0.1149 0.044 0.1901 0.2017 0.2368
−0.006 0.1029 0.0828 0.1084 0.046 0.2068 0.2094 0.2425
−0.004 0.0980 0.0781 0.1038 0.048 0.2163 0.2176 0.2489
−0.002 0.0933 0.0732 0.0978 0.050 0.2264 0.2253 0.2559
0.000 0.0892 0.0670 0.0916

Note: σ̂g, σ̂e, and σ̂b are annualized volatility estimates from the Gaus-
sian, the Epanechnikov, and the Biweight kernels, respectively.

tendency of large returns (both positive and negative) to follow large returns, and small

returns (both positive and negative) to follow small returns.

3 Simulation procedure

We price options on the S&P 500 Index (SPX) on 3 January 2022, the first trading day6

of 2022. SPX options are of the European type and have an expiration of up to 12

months. We perform our computations through simulation and with different settings.

Specifically, one setting is different from another by the values it assumes for the following

four variables: the risk-free interest rate rf , the dividend yield7 d, the date of expiration T

of the option, and the exercise price X. For our simulation, rf is set to assume 0.02 and

0.05; d to assume 0.03; T to assume 3, 6, and 12 months; and P0/X to range from 0.90

to 1.10 in increments of 0.01. For example, given P0 ≡ the S&P 500 Index on 3 January

6The day of 3 January 2022 is a Monday.
7The value of 0.03 for the dividend yield is based on an average estimate using the S&P 500 Index

from 2012 to 2021.
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Figure 3: A graphical exposition of the three annualized N-W estimates for the volatility

2022 = 4,796.56, X will be 4,568.15 when P0/X = 1.05.

We will determine index option prices based on the B-S parametric model and the

three B-S nonparametric models. The difference between the parametric model and the

nonparametric models is that the former uses a constant value for the volatility σ in

Equation (3) and the latter uses different values for σt. In the former, given that the

volatility of daily log return st ≡ log(Pt) − log(Pt−1) = 0.00826 in the year 20218, the

annualized volatility used is 0.00826x
√
252 = 0.1311. In the latter, the volatility σt used

will be those in Table 2 based on the st value and the kernel incorporated. By the way,

option prices based on the B-S parametric model can simply be computed using the

standard B-S pricing formula. See Black and Scholes (1973) and Hull (2018).

Note that dividend payment will reduce the growth rate of the index. If the index

grows from P0 at time 0 to PT at time T with an annualized dividend yield of d, then it

will grow from P0 at time 0 to PT e
dt at time T without the dividend yield. For simplicity,

we replace P0 by P ′
0 = P0e

−dt and PT by P ′
T = PT e

−dt, and then price index options as if

the market index did not pay out any dividends. With ϵt to represent a standard normal

variate, Equation (4) can be written in discrete form under the risk-neutral probability

as

logP ′
t − logP ′

t−1 =

(
rf −

σ2
t

2

)
∆t+ σtϵt

√
∆t (16)

8Given that we price options with maturities of one year or less (3-month, 6-month, and 12-month) on
the first trading day of 2022, it is appropriate to use the one-year data of 2021 to estimate the annualized
volatility σ for the B-S parametric model.
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For our simulation for the three B-S nonparametric models, consider a 6-month option

to expire on 30 June 2022 with an exercise price of X. We denote 3 January 2022 by

time 0 and 30 June 2022 by time T . We want to determine the price at time 0 of this

option with expiration date T and exercise price X. At time 0, P0 ≡ the S&P 500 Index

= 4,796.56. We partition the length of this 6-month option [0, T ] into 126 intervals9

as {0 ≡ t0 < · · · < t126 ≡ T}. That is, each interval is of length ∆t = ti − ti−1 = 1
126

.

Equation (16) now becomes

logP ′
T = logP ′

0 +
126∑
t=1

[(
rf −

σ2
t

2

)
∆t+ σtϵt

√
∆t

]
(17)

A typical trajectory of the index Pt from time 0 to time T is simulated as follows. We

simulate 126 random draws of ϵt, each of which is used for each interval ∆t, to determine

PT at time T . Note that at different points in time as we move forward through the life

of the option, the volatility used over the next interval depends on the magnitude of the

daily log return st of the market index over the previous interval. For example, at time 1,

the volatility used is based on the daily log return from time 0 to time 1. Specifically, the

S&P 500 Index was 4,796.56 on 3 January 2022 and 4,793.54 on 4 January 2022, which

implies a daily log return of −0.00063. From Table 2, a daily log return of −0.00063

corresponds to an annualized volatility of 0.0892 for the Gaussian kernel, 0.0670 for the

Epanechnikov kernel, and 0.0916 for the Biweight kernel. Hence, we use these values for

σ1 at time 1. The same procedure is used for choosing volatility at other time points.

Proceeding in similar fashion, we repeat the above procedure to simulate 100,000

independent trajectories for each setting. For each trajectory, we determine P ′
T . Then

the call and put for trajectory j are obtained as cj = max [0, P ′
T −X] e−rfT and pj =

max [0, X − P ′
T ] e

−rfT , where j = 1, 2, . . . , 100,000. The prices of call and put at time 0

are

c =
1

100,000

[
c1 + c2 + · · ·+ c100,000

]
(18)

p =
1

100,000

[
p1 + p2 + · · ·+ p100,000

]
(19)

4 Results for option prices

For simplicity, we use Gauss, Epane, or Biwei to stand for the B-S nonparametric model

equipped with the Gauss, the Epanechnikov, or the Biweight kernel, respectively. As

shown in Section 2, the volatilities in Table 2 generated by the three kernels are tailor-

made for the B-S nonparametric models and, as such, are better estimates than the “one-

size-fits-all” volatility estimate of 0.1311 used by the B-S parametric model. With better

9Similarly, we partition the length of a 3-month option into 63 intervals and the length of a 12-month
option into 252 intervals.



Econometric Research in Finance • Vol. 7 • No. 1 135

estimates for the volatility, the three B-S nonparametric models can correct a substantial

amount of the systematic pricing biases in the B-S parametric model. Therefore, we use

the three B-S nonparametric models as a yardstick against which the B-S parametric

model is compared. In what follows, we first present and discuss the option prices under

the B-S nonparametric models and the B-S parametric model, and then we illustrate,

with concrete numbers, how much investors will overpay for options priced based on the

B-S parametric model.

4.1 Option prices between nonparametric models and parametric model

Table 3: Prices of index options when expiration date T = 3 months and rf = 0.02

Call Price Put Price

P0

X B-S Gauss Epane Biwei B-S Gauss Epane Biwei

0.90 6.87 0.85 0.11 1.03 549.08 541.30 540.88 541.37
0.91 10.12 1.64 0.28 1.95 494.06 483.82 482.77 484.02
0.92 14.52 2.99 0.65 3.48 441.45 428.17 426.13 428.55
0.93 20.32 5.20 1.43 5.98 391.47 374.59 371.13 375.27
0.94 27.78 8.78 2.93 9.90 344.34 323.58 318.04 324.59
0.95 37.16 14.25 5.75 15.77 300.26 275.60 267.42 277.02
0.96 48.66 21.98 10.65 23.93 259.44 231.00 219.98 232.85
0.97 62.48 32.60 18.35 34.96 222.00 190.37 176.42 192.62
0.98 78.74 46.47 29.59 49.28 188.06 154.03 137.46 156.74
0.99 97.51 63.95 45.20 66.99 157.63 122.32 103.88 125.26
1.00 118.78 84.99 65.50 88.20 130.70 95.15 75.98 98.25
1.01 142.50 109.59 90.40 112.74 107.16 72.49 53.61 75.54
1.02 168.53 137.45 119.54 140.50 86.87 54.03 36.43 56.98
1.03 196.69 168.21 152.30 171.13 69.60 39.36 23.76 42.18
1.04 226.75 201.41 188.05 204.07 55.11 28.01 14.96 30.56
1.05 258.47 236.60 225.90 238.93 43.12 19.49 9.10 21.71
1.06 291.56 273.26 265.05 275.19 33.33 13.27 5.37 15.10
1.07 325.77 311.01 304.79 312.51 25.46 8.94 3.03 10.34
1.08 360.82 349.27 344.70 350.49 19.21 5.90 1.64 7.01
1.09 396.48 387.71 384.46 388.70 14.32 3.80 0.86 4.69
1.10 432.51 426.11 423.81 426.89 10.55 2.39 0.41 3.06

Notes: B-S stands for Black-Scholes model, Gauss for model with Gaussian
kernel, Epane for model with Epanechnikov kernel, and Biwei for model
with Biweight kernel. X is exercise price, d = 0.03 is dividend yield, and
P0 = 4,796.56 is the value of the S&P Index on 3 January 2022.

Tables 3 to 8 show the prices of index options with three different expiration dates T

and with two different risk-free interest rates rf . Regardless of the values10 for T and rf ,

the differences in option prices are not large between the three B-S nonparametric models.

For both calls and puts, Biwei generates the largest option prices, followed by Gauss and

then Epane. Suppose rf = 0.02, and P0/X = 1.00. When T = 3 months, the call and

10See Hull (2018) for how option prices change if there is a change in expiration date or in risk-free
interest rate.
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Table 4: Prices of index options when expiration date T = 6 months and rf = 0.02

Call Price Put Price

P0

X B-S Gauss Epane Biwei B-S Gauss Epane Biwei

0.90 26.48 7.02 1.80 8.08 577.81 556.93 551.67 557.87
0.91 33.42 10.14 3.11 11.49 526.77 502.06 495.00 503.30
0.92 41.64 14.31 5.13 15.99 478.27 449.52 440.30 451.07
0.93 51.27 19.86 8.09 21.94 432.39 399.56 387.75 401.52
0.94 62.39 27.03 12.38 29.52 389.19 352.41 337.73 354.77
0.95 75.08 36.06 18.46 38.93 348.71 308.26 290.62 311.01
0.96 89.42 47.16 26.71 50.47 310.97 267.29 246.80 270.48
0.97 105.43 60.63 37.51 64.32 275.99 229.77 206.60 233.33
0.98 123.14 76.62 51.30 80.59 243.74 195.79 170.43 199.65
0.99 142.53 94.99 68.25 99.17 214.18 165.22 138.44 169.28
1.00 163.57 115.82 88.53 120.20 187.25 138.08 110.76 142.35
1.01 186.20 139.17 112.01 143.53 162.87 114.42 87.22 118.65
1.02 210.35 164.67 138.40 169.03 140.92 93.81 67.51 98.05
1.03 235.93 192.21 167.34 196.43 121.30 76.16 51.24 80.26
1.04 262.82 221.58 198.58 225.58 103.86 61.20 38.16 65.07
1.05 290.90 252.48 231.81 256.21 88.45 48.61 27.90 52.22
1.06 320.06 284.69 266.61 288.14 74.94 38.15 20.03 41.48
1.07 350.14 318.09 302.50 321.12 63.15 29.68 14.06 32.59
1.08 381.02 352.31 339.24 355.02 52.94 22.81 9.70 25.39
1.09 412.57 387.13 376.43 389.55 44.15 17.29 6.55 19.59
1.10 444.65 422.43 413.82 424.53 36.62 12.98 4.33 14.96

Notes: B-S stands for Black-Scholes model, Gauss for model with Gaussian
kernel, Epane for model with Epanechnikov kernel, and Biwei for model
with Biweight kernel. X is exercise price, d = 0.03 is dividend yield, and
P0 = 4,796.56 is the value of the S&P Index on 3 January 2022.

put prices are 88.20 and 98.25 under Biwei, 84.99 and 95.15 under Gauss, and 65.50 and

75.98 under Epane. When T = 6 months, the call and put prices are 120.20 and 142.35

under Biwei, 115.82 and 138.08 under Gauss, and 88.53 and 110.76 under Epane. When

T = 12 months, the call and put prices are 158.02 and 205.10 under Biwei, 152.02 and

199.45 under Gauss, and 114.99 and 161.77 under Epane.

On the other hand, the prices of both calls and puts are, across the board, larger based

on the B-S parametric model than based on the three B-S nonparametric models, regard-

less of the values for T and rf . A few numbers will suffice to bring out this phenomenon.

Suppose rf = 0.05, and P0/X = 1.05. When T = 3 months, the call and put prices

are 284.53 and 35.21 under the B-S parametric model, compared to 265.57 and 14.40

under Gauss, 256.66 and 5.98 under Epane, and 267.07 and 16.25 under Biwei. When

T = 6 months, the call and put prices are 337.61 and 67.82 under the B-S parametric

model, compared to 304.23 and 32.78 under Gauss, 287.32 and 16.23 under Epane, and

306.95 and 35.93 under Biwei. When T = 12 months, the call and put prices are 421.54

and 112.10 under the B-S parametric model, compared to 366.49 and 57.33 under Gauss,

340.96 and 31.49 under Epane, and 370.61 and 61.91 under Biwei. The B-S parametric

model considerably overprices both calls and puts!
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Table 5: Prices of index options when expiration date T = 12 months and rf = 0.02

Call Price Put Price

P0

X B-S Gauss Epane Biwei B-S Gauss Epane Biwei

0.90 67.29 23.63 8.82 26.21 636.47 593.46 578.00 595.69
0.91 77.81 30.00 12.39 33.00 589.58 542.42 524.16 545.08
0.92 89.40 37.58 17.02 41.05 545.01 493.85 472.63 496.97
0.93 102.08 46.47 22.96 50.50 502.74 447.78 423.63 451.47
0.94 115.87 56.86 30.39 61.30 462.75 404.39 377.27 408.49
0.95 130.78 68.77 39.55 73.60 425.01 363.65 333.79 368.13
0.96 146.81 82.18 50.53 87.40 389.49 325.51 293.21 330.38
0.97 163.96 97.21 63.50 102.71 356.15 290.05 255.69 295.21
0.98 182.20 113.85 78.54 119.62 324.93 257.23 221.27 262.66
0.99 201.51 132.13 95.68 138.05 295.78 227.05 189.96 232.62
1.00 221.86 152.02 114.99 158.02 268.64 199.45 161.77 205.10
1.01 243.21 173.47 136.42 179.60 243.44 174.34 136.65 180.13
1.02 265.51 196.47 159.83 202.54 220.11 151.71 114.42 157.44
1.03 288.71 220.93 185.10 226.88 198.56 131.42 94.94 137.03
1.04 312.76 246.72 212.23 252.48 178.71 113.32 78.18 118.73
1.05 337.60 273.70 240.91 279.24 160.49 97.25 63.81 102.44
1.06 363.15 301.66 270.92 307.01 143.81 82.97 51.57 87.96
1.07 389.37 330.64 302.26 335.77 128.57 70.49 41.47 75.28
1.08 416.18 360.52 334.61 365.37 114.69 59.68 33.12 64.19
1.09 443.51 391.06 367.65 395.61 102.09 50.29 26.23 54.49
1.10 471.31 422.17 401.22 426.42 90.67 42.18 20.59 46.09

Notes: B-S stands for Black-Scholes model, Gauss for model with Gaussian
kernel, Epane for model with Epanechnikov kernel, and Biwei for model
with Biweight kernel. X is exercise price, d = 0.03 is dividend yield, and
P0 = 4,796.56 is the value of the S&P Index on 3 January 2022.

4.2 How much investors overpay based on B-S parametric model

Options on the S&P 500 Index (SPX) are actively traded on the Cboe Options Exchange.

One SPX option contract gives the holder the right to buy or sell 100 times the index

at the specified exercise price. The following computations illustrate how much investors

will overpay if the market prices the SPX options based on the B-S parametric model.

To begin with, on 3 January 2022 when the risk-free interest rate rf is 0.05, suppose a

call buyer wishes to buy a 6-month call and a put buyer to buy a 6-month put at an

exercise price of 4,796.56, the value of the S&P 500 Index on that day. This implies

that P0/X = 4,796.56/4,796.56 = 1.00. From Table 7, the call and put prices are 198.36

and 151.35 under the B-S parametric model, 151.88 and 103.19 under Gauss, 124.85 and

76.53 under Epane, and 155.85 and 107.59 under Biwei. Then the call buyer will overpay

(198.36−151.88)×$100 = $4,648 per option contract if the true underlying model at work

is Gauss; (198.36−124.85)×$100 = $7,351 if Epane; and (198.36−155.85)×$100 = $4,251

if Biwei. On the other hand, the put buyer will overpay (151.35−103.19)×$100 = $4,816

per option contract if the true model is Gauss; (151.35− 76.53)× $100 = $7,482 if Epane;

and (151.35− 107.59)× $100 = $4,376 if Biwei.
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Table 6: Prices of index options when expiration date T = 3 months and rf = 0.05

Call Price Put Price

P0

X B-S Gauss Epane Biwei B-S Gauss Epane Biwei

0.90 8.96 1.33 0.22 1.53 511.55 502.06 501.44 502.62
0.91 12.99 2.50 0.49 2.85 457.74 445.39 443.87 446.09
0.92 18.37 4.41 1.12 5.02 406.54 390.72 387.91 391.68
0.93 25.36 7.56 2.36 8.48 358.16 338.50 333.79 339.78
0.94 34.21 12.47 4.69 13.72 312.82 289.23 281.94 290.84
0.95 45.16 19.53 8.93 21.20 270.73 243.25 233.13 245.26
0.96 58.41 29.35 15.75 31.38 232.04 201.13 188.02 203.51
0.97 74.11 42.42 26.02 44.78 196.87 163.32 147.41 166.04
0.98 92.34 59.05 40.53 61.69 165.27 130.13 112.09 133.11
0.99 113.13 79.32 59.68 82.12 137.23 101.57 82.42 104.72
1.00 136.42 103.18 83.63 106.00 112.67 77.58 58.52 80.75
1.01 162.09 130.51 112.05 133.20 91.45 58.01 40.03 61.06
1.02 189.98 160.88 144.27 163.42 73.35 42.40 26.27 45.29
1.03 219.85 193.83 179.70 196.05 58.14 30.26 16.61 32.84
1.04 251.46 228.88 217.42 230.76 45.52 21.09 10.11 23.32
1.05 284.53 265.57 256.66 267.07 35.21 14.40 5.98 16.25
1.06 318.78 303.43 296.66 304.52 26.91 9.70 3.41 11.14
1.07 353.95 341.94 336.88 342.74 20.31 6.44 1.87 7.60
1.08 389.78 380.65 376.97 381.19 15.15 4.16 0.97 5.06
1.09 426.03 419.36 416.70 419.66 11.16 2.63 0.46 3.28
1.10 462.50 457.85 455.95 458.00 8.12 1.61 0.20 2.11

Notes: B-S stands for Black-Scholes model, Gauss for model with Gaussian
kernel, Epane for model with Epanechnikov kernel, and Biwei for model
with Biweight kernel. X is exercise price, d = 0.03 is dividend yield, and
P0 = 4,796.56 is the value of the S&P Index on 3 January 2022.

5 Conclusion

Financial economists and investors alike typically employ the B-S parametric model to

price various kinds of financial options. However, there is extensive empirical evidence

that the B-S model is inadequate to value options. A major problem with the B-S model

is that it assumes constant volatility of stock returns. This erroneous assumption will

cause the B-S model to price options incorrectly. By means of nonparametric regression,

this study incorporates a volatility-adjusting mechanism into the B-S model and prices

options on the S&P 500 Index. Specifically, the upgraded B-S model, referred to as

the B-S nonparametric model, is incorporated with such a mechanism whose function

is to assign larger volatilities for larger log returns and smaller volatilities for smaller

log returns to characterize volatility clustering. In particular, we utilize three different

kernels to formulate three different B-S nonparametric models. Using these three B-S

nonparametric models as a yardstick, our simulation results show that, across the board,

the B-S parametric model substantially overvalues both call and put options.
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Table 7: Prices of index options when expiration date T = 6 months and rf = 0.05

Call Price Put Price

P0

X B-S Gauss Epane Biwei B-S Gauss Epane Biwei

0.90 36.23 11.41 3.71 12.89 509.00 482.52 475.18 484.43
0.91 45.09 16.15 6.06 18.00 460.74 430.13 420.42 432.41
0.92 55.42 22.38 9.52 24.62 415.20 380.48 368.00 383.15
0.93 67.34 30.39 14.55 32.99 372.44 333.82 318.35 336.85
0.94 80.91 40.37 21.54 43.44 332.50 290.29 271.82 293.79
0.95 96.19 52.69 30.94 56.08 295.39 250.22 228.84 254.04
0.96 113.21 67.44 43.16 71.14 261.11 213.68 189.76 217.80
0.97 131.96 84.74 58.59 88.60 229.63 180.74 154.95 185.03
0.98 152.45 104.60 77.38 108.59 200.90 151.39 124.53 155.81
0.99 174.60 127.00 99.51 131.05 174.84 125.57 98.45 130.05
1.00 198.36 151.88 124.85 155.85 151.35 103.19 76.53 107.59
1.01 223.64 178.89 153.05 182.77 130.31 83.89 58.42 88.20
1.02 250.33 207.91 183.77 211.49 111.59 67.49 43.73 71.51
1.03 278.31 238.59 216.61 241.98 95.04 53.65 32.04 57.46
1.04 307.45 270.76 251.29 273.86 80.51 42.15 23.04 45.67
1.05 337.61 304.23 287.32 306.95 67.82 32.78 16.23 35.93
1.06 368.64 338.68 324.33 341.04 56.83 25.19 11.22 27.98
1.07 400.42 373.89 361.96 375.88 47.36 19.16 7.59 21.58
1.08 432.80 409.61 399.88 411.29 39.25 14.40 5.03 16.51
1.09 465.65 445.64 437.86 447.01 32.36 10.68 3.27 12.49
1.10 498.84 481.81 475.68 482.90 26.54 7.84 2.08 9.35

Notes: B-S stands for Black-Scholes model, Gauss for model with Gaussian
kernel, Epane for model with Epanechnikov kernel, and Biwei for model
with Biweight kernel. X is exercise price, d = 0.03 is dividend yield, and
P0 = 4,796.56 is the value of the S&P Index on 3 January 2022.
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Table 8: Prices of index options when expiration date T = 12 months and rf = 0.05

Call Price Put Price

P0

X B-S Gauss Epane Biwei B-S Gauss Epane Biwei

0.90 98.69 43.76 21.18 47.64 513.47 458.84 435.94 463.17
0.91 112.62 54.10 28.39 58.41 471.69 413.46 387.44 418.23
0.92 127.74 66.07 37.42 70.65 432.32 370.93 341.97 375.98
0.93 144.05 79.67 48.37 84.52 395.30 331.21 299.60 336.52
0.94 161.54 94.94 61.36 100.03 360.60 294.29 260.40 299.83
0.95 180.20 111.92 76.52 117.22 328.17 260.18 224.46 265.93
0.96 200.00 130.59 93.93 136.08 297.94 228.81 191.84 234.77
0.97 220.91 150.99 113.71 156.56 269.85 200.22 162.62 206.24
0.98 242.87 173.04 135.77 178.69 243.82 174.27 136.69 180.38
0.99 265.85 196.77 159.98 202.38 219.77 150.97 113.87 157.04
1.00 289.79 222.00 186.13 227.51 197.62 130.12 93.93 136.08
1.01 314.62 248.62 214.18 253.97 177.28 111.56 76.80 117.37
1.02 340.28 276.50 243.87 281.64 158.65 95.15 62.21 100.75
1.03 366.70 305.49 275.06 310.33 141.64 80.72 49.97 86.02
1.04 393.81 335.52 307.51 340.01 126.16 68.15 39.83 73.10
1.05 421.54 366.49 340.96 370.61 112.10 57.33 31.49 61.91
1.06 449.81 398.15 375.13 401.91 99.38 48.00 24.67 52.22
1.07 478.56 430.40 409.86 503.90 87.90 40.02 19.17 29.64
1.08 507.71 463.08 444.95 466.08 77.57 33.22 14.77 36.69
1.09 537.20 496.02 480.22 498.70 68.30 27.41 11.29 30.54
1.10 566.96 529.17 515.50 531.54 60.00 22.51 8.52 25.33

Notes: B-S stands for Black-Scholes model, Gauss for model with Gaussian
kernel, Epane for model with Epanechnikov kernel, and Biwei for model
with Biweight kernel. X is exercise price, d = 0.03 is dividend yield, and
P0 = 4,796.56 is the value of the S&P Index on 3 January 2022.
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