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ABSTRACT: This paper aims to analyse the connectivity of 13 stock mar-

kets, between 1998 and 2019, with a time-varying proposal, to evaluate evolu-

tion of the linkage between these markets over time. To do so, we propose to

use a network built based on the correlation coefficients from the Detrended

Cross-Correlation Analysis, using a sliding windows approach. Besides allow-

ing for analysis over time, our approach also enables us to verify how the net-

work behaves for different time scales, which enriches the analysis. We use two

different properties of networks: global efficiency and average grade, to mea-

sure the network’s connectivity over time. We find that the markets under

analysis became more connected before the subprime crisis, with this behav-

ior extending even after the Eurozone crisis, showing that during extreme events

there is an increase in financial risk, as found in the international literature.

JEL classification: C58, G01, G15.

Keywords: Centrality, Correlation Coefficient, Detrended Cross-Correlation

Analysis, Network.

∗Corresponding Author. E-mail: pjsf@uevora.pt

https://doi.org/10.2478/erfin-2021-0004
http://creativecommons.org/licenses/by/4.0/


58 Econometric Research in Finance • Vol. 6 • No. 1

1 Introduction

The increasing interest in financial markets’ comovements is explained by both the benefits

and risks of increased integration (Obstfeld, 1994; Bekaert et al., 2005, 2014). The evo-

lutionary patterns of correlation between financial markets, especially in specific market

stages, could be very informative for market stakeholders, such as investors or policymak-

ers. Furthermore, some specific events affect several different markets, increasing their

exposure to possible financial contagion (Beine et al., 2010).

The occurrence of several crisis periods, the availability of an ever increasing amount

of data, the constant improvement of computational capacity, and the introduction of new

robust econometric approaches, have all allowed for the expansion of research in several

fields of finance, including the study of stock market comovements. Most of these studies

found that stock market comovements change over time (Brooks and Del Negro, 2004;

Kizys and Pierdzioch, 2009), all with increased comovements since early 2000.

The literature contains several studies analysing comovements in financial markets, as

well as the use of networks. The next section gives a brief literature review. However,

there is a shortage of studies analysing the dynamics of networks and aspects related to

time scales, in parallel. Regarding dynamic networks, these allow for the possibility of

associating them with the predictability of financial crises, systemic risk, or contagion

effect. Additionally, with a multiscale network, the influence of time scales on network

connectivity can be identified. For this reason, this article intends to create a network

analysis method by joining the use of Detrended Cross-Correlation Analysis (DCCA)

correlation coefficients that are based on the sliding windows approach (Tilfani et al.,

2019) with the use of networks that are based on the global efficiency method (Latora

and Marchiori, 2001) as a connectivity indicator. All in an effort to associate network

connectivity with the occurrence of financial crises.

Given that the relationships between different financial markets can alter with the

change in the analysed time scales, this work shows the relationship between connectivity

and the potential risk in financial markets, combining a network with multiscale networks.

Our results show that before the subprime crisis, markets were becoming more connected

and remained so between the subprime and the Eurozone crisis and also after the Eurozone

crisis. Just after that crisis, connectivity seemed to decrease. Our results reinforce the

international literature that shows a relationship between both connectivity and financial

risk (Tabak et al., 2014; Minoiu et al., 2015; Acemoglu et al., 2015; Diebold and Yılmaz,

2014; Wang et al., 2017).

The remainder of the paper is organized as follows. Section 2 reviews the literature on

the issues of stock market comovements and networks. Section 3 presents the methodology

and data used in the paper. Section 4 presents the results. Finally, section 5 concludes

the paper.
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2 A Literature Review on Stock Market Comovements

The study of how stock markets comove is not a new concept. A great number of studies

are found within the field. For this reason, and because of the sheer difficulty of making an

exhaustive literature review, we focus our literature review on papers considering three

different topics. First, the approaches used to analyse comovements between markets.

Second, the use of Econophysics applications to analyse those comovements. Third, the

use of networks to explain market linkages. Therefore, we divide this literature review

into three subsections. These will follow our objective of building multiscale networks in

order to analyse financial markets and the possibility of increased financial risk, according

to the evolution of those networks.

2.1 First Approaches to Analyse Stock Market Comovements

The first type of approach to analysing stock market comovements used correlation coef-

ficients. This is the most common way to assess the existence of comovements between

financial assets and the way crisis affects those comovements. For example, considering

the October 1987 crash, King and Wadhwani (1990), as well as Bertero and Mayer (1990),

analysed covariances and correlations caused by that crash. Studies, such as Brooks and

Del Negro (2004), applied sliding windows approaches in order to evaluate the behaviour

of correlation coefficients over time. They studied comovements with rolling windows

correlation coefficients, allowing for the continuous analysis of comovements. ARCH and

GARCH models can also be used to analyse market linkages (Longin and Solnik, 1995;

Edwards and Susmel, 2000), as well as cointegration methodologies (Kasa, 1992; Serletis

and King, 1997). Studies of the different linkage behaviour between financial markets over

time could also use methodologies that apply switching regimes (Hassler, 1995; Edwards

and Susmel, 2000).

Prior studies on this topic, including most of the previously identified work, are based

on the application of linear measures. However, financial markets are usually affected by

both non-linearities and phenomena known in the financial literature as stylized facts.

These include fat tails, self-similarity, non-stationarity, or non-heterogeneity (Wang et al.,

2012; Valls, 2012; Usman et al., 2015; Martin-Montoya et al., 2015).

It is in this context that Peters (1991, 1994) proposes the Fractal Market Hypothesis

(FMH). FMH is based on several of these features that are observed in financial markets

(Li et al., 2015). It is in opposition to the more mainstream Efficient Market Hypothesis

(EMH) of Fama (1965, 1970). In fact, EMH considers the homogeneity of investors,

which is an assumption that is not well explained in times of turbulence. On the contrary,

and according to the FMH, the existence of heterogeneity among investors implies that

markets could see their market liquidity assured. Authors, such as Rachev et al. (1999)

and Kristoufek et al. (2012), conclude that the existence of a given investment horizon

could end in the occurrence of extreme events, making markets unstable.
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Generally, the application of linear measures, the first to be used in this context, tended

to identify the increased linkage in financial markets. However, considering the limitations

of these approaches, as well as the possible existence of non-linear patterns, which should

be explained, a new strand of work emerged. It uses statistical physics approaches to

analyse financial markets’ behaviour in general, including stock market comovements.

2.2 Econophysics and its Applications to Financial Market Comove-

ments

The possible limitations in traditional models or hypotheses, like the EMH, allied to the

increase in data, drew physicists’ attention to financial markets, allowing for the creation

of a multidisciplinary research field called Econophysics. The main objective of this field

is to analyse the financial markets as complex systems (Stanley et al., 1996; Mantegna

and Stanley, 1999), this is despite the proximity between physics and finances that were

started earlier (Mandelbrot, 1963).

One of the assumptions that could be analysed, as previously mentioned, is the ho-

mogeneous investor interests. In fact, investors’ different interests could imply that they

behave differently according to both short- and long-term horizons. This behaviour could

not be observed by all the methodologies used in the existing literature. To attain this

objective, Rua and Nunes (2009) used a wavelet analysis to analyse the comovements of

stock markets in developed economies. They concluded that market agents’ interest is

different in the short and long run, meaning that the international diversification is more

possible in the short run.

Similarly, the application of methodologies, which allow for the study of multiscale,

could help to distinguish between the short and long runs. This is the reason for using

methodologies like the Detrended Cross-Correlation Analysis (DCCA), which is also used

in this paper. With the DCCA, Ma et al. (2013) analyse the relationship between some

Asian stock markets, El Alaoui and Benbachir (2013) make an analysis of Middle East

and North African indices, Shi et al. (2014) assess the cross-correlations between U.S.

and Chinese stock indices and Ferreira (2017) analyses the particular case of increased

stock market integration between Portugal and Brazil. Aiming to study the evolution

of comovements over time, Tilfani et al. (2019) proposed for the application of sliding

windows to the DCCA correlation coefficient, assessing the continuous evolution of stock

markets’ comovements, investigating the dynamic multiscale interdependence between

major stock markets.

The use of methodologies like the DCCA, originating in statistical physics, allows for

the understanding of financial markets as complex systems. The complexity of financial

markets, related to the existence of many agents with different interests, is potentiated

during turmoil periods. This is when systems reveal different characteristics more clearly

than in calm periods (Sornette, 2003). In fact, the analysis of the impact of crises on
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comovement behaviour is not new. For example, Forbes and Rigobon (2002) studied the

evolution of correlation between stock markets in order to distinguish between contagion

and interdependence. With the former being related to the shift in market linkages caused

by a given phenomenon, and the latter as the change in comovements caused by the

existence of a change in volatility.

In particular, the use of Econophysics approaches increases the possibilities of analysing

financial markets, extending the different analyses to non-linear approaches, instead of

only linear ones, as well as considering different multiscale analyses. In fact, this last

feature allows for an extension of the analyses, for example, in the context of network

application.

2.3 The Use of Networks to Explain Market Linkages

Since the 90s, the use of new network topologies, such as small world (Watts and Strogatz,

1998) and scale-free (Barabási and Albert, 1999), increased the use of networks in financial

markets. The use of networks is also related to the interest in studying complex systems.

Complexity, marked by the coexistence of many agents and their different interests in

different time scales, cannot be predicted from an isolated understanding of each of these

parts (Costa et al., 2007). Network theory has allowed economists to study how different

agents interact with and to identify the most influential agent, being applied to different

areas (Jackson, 2010; Schweitzer et al., 2009; Ferreira, 2017).

According to Mantegna (1999), complex networks can capture a large amount of in-

formation about financial series. This is also useful for studying the phenomenon of

market integration. Moreover, those complex networks can identify characteristics such

as centrality, medium degree, and network hub, as well as others. Analysing how compa-

nies of the New York Stock Exchange (NYSE) were connected, Mantegna (1999) applied

the Minimum Spanning Tree (MST) method. With high-frequency data, Bonanno et al.

(2001) also analysed the major stocks traded in the U.S., showing that the correlations

between them were different for different time horizons. Onnela et al. (2003) also studied

NYSE in order to build hierarchical networks, which is one of the main uses of the MST

(Junior and Franca, 2012; Matesanz et al., 2014; Huang et al., 2015). Furthermore, with

NYSE, Kenett et al. (2010) applied a Partial Correlation Network (PCN) with a dynamic

analysis, concluding on the existence of persistence within the financial sector. Kristoufek

et al. (2012) applied MST to the correlation between biofuels and other commodities (for

example, before and after a period of food crisis), concluding that correlations increased

with the crisis. A similar analysis was made to assess the relationship between food and

fuel commodities by Kristoufek et al. (2013).

Recently, complex networks have been used to analyse evidence of contagion (Gai and

Kapadia, 2010; Glasserman and Young, 2015; Acemoglu et al., 2015). These studies relate

the contagion effect to the transition phase from a given moment, using network connec-

tivity as a proxy for the spread of financial shocks. In this context, Diebold and Yılmaz
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(2014) used complex networks, demonstrating that markets increased their connection

during the 2008 crisis. Complex networks were also used to measure specific issues of risk,

such as systemic risk in the bank payment system, or as a tool to analyse the possibility

of financial crises occurring (Soramäki et al., 2007; Minoiu and Reyes, 2013; Battiston

et al., 2012; Yan et al., 2014; Tabak et al., 2014; Minoiu et al., 2015).

Methodologies that are based on multiscale networks could give us different types of

analysis. Wang et al. (2013a,b) combined the DCCA correlation coefficient and the MST.

This resulted in a multiscale network for 44 different currencies between 2007 and 2012,

finding a predominance of both the dollar and the euro. Kwapień et al. (2017) generalized

the MST, introducing a family of minimum spanning trees that are dependent on the

periodicity of the data, allowing for the analysis of data ranging from one minute to

one month. Pereira et al. (2019) also applied a network approach, based on the DCCA

correlation coefficient, to analyse 20 financial markets before and after the 2008 crisis, and

concluded on the increased connectivity after the crisis.

3 Methodology and Data

We propose the construction of a network that is based on the DCCA correlation co-

efficient that also has a sliding windows approach. Proposed by Podobnik and Stanley

(2008), the DCCA is used to estimate long-range cross-correlations between two different

time series xk and yk, with the same length (k = 1, ..., t), which are integrated in the first

step. First, X(t) =
∑t

i=1(xi − 〈x〉) and Y (t) =
∑t

i=1(yi − 〈y〉) are calculated, with 〈x〉
and 〈y〉 as the mean observed values of the original time series. The new profiles X(t)

and Y (t) are then divided into boxes of length n, and for those boxes local trends x̃(t)

and ỹ(t) are calculated using ordinary least squares. With the trends, profiles X(t) and

Y (t) are detrended, resulting in Xn(t) = X(t)− x̃(t) and Yn(t) = Y (t)− ỹ(t). These are

then used to calculate the detrended covariances given by:

f 2
DCCA =

1

n− 1

i+n∑
t=i

(X(t)Y (t)) (1)

calculated for each box. Summing all boxes of size n, we have:

F 2
DCCA(n) =

1

N − n

N−n∑
i=1

f 2
DCCA (2)

After repeating the same process for all the existing length boxes, as well as the regres-

sion of the log-log relationship between F 2
DCCA(n) and n, we have a power law given by

FDCCA (n) ∼ nλ, with λ the DCCA parameter, which measures the long-range dependence

between the original time series.

Considering that the DCCA is a covariance measure, Zebende (2011) proposes using
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the correlation coefficient given by:

ρDCCA (s, T ) =
F 2

DCCA(s)

FDFA{xi}(s)FDFA{yi}(s)
(3)

with FDFA being the fluctuation function of the Detrented Fluctuation Analysis (DFA)

(Peng et al., 1994) used to analyse the serial dependence of individual time series.

The proposed correlation coefficient ρDCCA has the desired properties of a correlation

coefficient, in particular −1 ≤ ρDCCA(n) ≤ 1. It is null when variables are not correlated,

being positive (negative) depending on the existence of persistent (anti-persistent) corre-

lations. This is a scale dependent coefficient, which means it can be calculated for both

short- and long-time scales and can also be used to distinguish between the behaviour

in the short and long run. Moreover, it is efficient in the presence of non-stationary

time series (Kristoufek, 2014b,a; Piao and Fu, 2016; Zhao et al., 2017). This correlation

coefficient could also be tested according to the procedures of Podobnik et al. (2011).

As calculations of the DCCA correlation coefficient could have volatility bias, in order

to reduce that bias, filtered series were used. In particular, we considered rt,f = rt/
√
ht,

with ht as the conditional variance of a GARCH (1,1) process, transformation suggested

by Cajueiro and Tabak (2004), as well as Kristoufek (2012).

As we aim to build a dynamic network, to measure the linkage between stock markets

in a continuous way, we use sliding windows that calculate time varying DCCA correlation

coefficients. This approach was presented, for example, in Tilfani et al. (2019), who used

it to analyse the continuous comovements between stock markets. We used windows

of 1,000 observations to, not only guarantee the robustness of the estimated correlation

coefficients, but also to ensure the trade-off between the long-term and local features.

These correlation coefficients are used to build a dynamic complex network, which

like any complex network, can be represented as a graph of a set R, with no weights

in their connections, and is defined by vertices v = {v1, v2, v3, ..., vN} and by the edges

ε = {e1, e2, e3..., eM}, which connect the different pairs of nodes. The number of edges

is given by the cardinality of the set of vertices n = |V | and the number of arcs is given

by the cardinality of the set of arcs (Newman, 2018). A weighted and directed network

can be represented by an n × n cost matrix given by W = {wij}. If wij = 0, there is no

directed connection between i and j, but a directed connection between j and i may exist

if wji 6= 0. In order to analyse network connectivity, we use the global efficiency property.

This is defined by Latora and Marchiori (2001) as:

E (G) =
1

n(n− 1)

∑
i 6=j∈G

1

d(i, j)
(4)

with d(i, j) being the average minimal path length between i and j. The average degree
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of an undirected network is given by:

〈k〉 =
1

n

n∑
i=1

ki (5)

Global efficiency was already used as an indicator of network connectivity by Yan

et al. (2014). In this study, we extend this by using multiscale methods, associating this

indicator by calculating the network based on the DCCA correlation coefficients and by

using a sliding windows approach.

This paper takes 13 stock market indices: EuroStoxx 600 (Eurozone), NYSE Com-

posite (US), FTSE 100 (UK), CAC40 (France), DAX30 (Germany), NIKKEI225 (Japan),

S&P/TSX (Canada), MIB (Italy), Bovespa (Brazil), MOEX (Russia), NIFTY500 (In-

dia), SSE (China), and JSE (South Africa). These indices reflect the most industrialized

economies (G7), as well as the BRICS, as indicators of emerging markets. It also reflects

EuroStoxx, since the Eurozone is a very relevant economic area (despite including French,

Italian, and German companies, it also includes firms from a very large economic area

that is comprised of 19 countries). Our sample starts on January 1, 1998 and ends on

October 29, 2019 with a total of 5,694 observations. As usual, we also transformed closing

prices in logarithmic returns.

4 Results and Discussion

Figure 1 presents the results of the overall efficiency of the network for a time scale of

4. The blue lines identify both the subprime and Eurozone crises, corresponding to the

peaks of the VIX index - an indicator of volatility. The figure reveals an increase in the

efficiency of the network from the beginning of 2005, up until April 2012. After that,

the efficiency of the network gradually decreased, stabilizing its value around 0.3 at the

beginning of 2018. Considering the blue lines, even before the beginning of the subprime

crisis, connectivity was already observed to be increasing. This increase continued until

just after the beginning of the Eurozone debt crisis when it started to decrease.

For the scales of 32, 64, and 125 days, with the global efficiency represented in Figure 2,

the degree of efficiency is higher when compared to the scale of 4 days. It means that, in

the long run, markets are more connected than in the short run. Efficiency levels are close

for these scales. However, at the beginning of the sample, the highest scale has higher

values, while the end of the sample has lower ones. This result means that at the beginning

of the sample, the long run was more relevant than the short run with a change in the

pattern after the crisis. This result is consistent with both the FMH and the difference

in behaviour across different time scales. Despite this, there is similar behaviour to that

found in the 4-day scale, since connectivity starts to rise from the beginning of 2005 and

reaches a peak between the two crises. After a period of stabilized connectivity, it started
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Figure 1: Global efficiency for the time scale equal to 4

Note: The values illustrated on the graph are given for 01/11 in subsequent years.

Source: Authors’ calculation.

to fall in late 2013 until reaching a minimum value in late 2017 with a new stabilization,

with similar values to those found before the beginning of the global financial crisis.

Considering the value of the networks’ global efficiency, in order to confirm the dif-

ference across the different periods and across the different time scales, we performed

different ANOVA tests in order to compare means. Considering the different time peri-

ods, we took three different sub-periods as follows: P1 - from the beginning of the sample

until the end of August 2007 (the period before both crises); P2 - from September 2007

until the end of 2014 (the period of both crises); P3 - from 2015 to the end of the sample

(the period after both crises).

The analysis of the mean comparison for the global efficiency is presented in Table 1.

There, we can conclude that the means are statistically different across the different time

periods, while the Scheffé test always identifies three different subsets. It is interesting

to note that the mean of P2 is always the highest, meaning that connectivity during the

crises is higher. Nevertheless, for lower time scales, the value of P3 is higher than in the

P1 period, with contrary results in the higher time scales. This means that investors’

preferences could change with the crises. Despite this, the mean value of global efficiency
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Figure 2: Global efficiency for multiple scales

Note: The values illustrated on the graph are given for 01/11 in subsequent years.

Source: Authors’ calculation.

generally increases with time scales, as identified in Table 2. This confirms that the means

across the different time scales are statistically different, forming four different subsets.

Table 1: Mean comparison for global efficiency across different periods

n = 4 n = 32 n = 64 n = 125

Pre-crises period (P1) 0.236 0.388 0.406 0.429
Crises periods (P2) 0.362 0.499 0.513 0.515
Post-crises period (P3) 0.311 0.406 0.402 0.399
Anova p-value 0.000 0.000 0.000 0.000
Homogeneous subsets P1 6= P2 6= P3 P1 6= P2 6= P3 P1 6= P2 6= P3 P1 6= P2 6= P3

Source: Authors’ calculation.

Figure 3 analyses the average degree of the network, revealing that for the four scales

analysed, the average degree increased even before the subprime crisis. After this event,

the average degree for the smaller scales remained high, while the degree for the larger

scales decreased, mainly for the 125-day scale. The average degree for all scales remained

high at the beginning of the Eurozone crisis, until they started to decrease at the beginning

of 2015, for higher time scales.
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Table 2: Mean comparison for global efficiency across different time scales

Global efficiency

n = 4 (S4) 0.311
n = 32 (S32) 0.432
n = 64 (S64) 0.443
n = 125 (S125) 0.451
Anova p-value 0.000
Homogeneous subsets S4 6= S32 6= S64 6= S125

Source: Authors’ calculation.

Figure 3: Average degree for multiple scale

Note: The values illustrated on the graph are given for 01/11 in subsequent years.

Source: Authors’ calculation.

The results corroborate with those of Diebold and Yılmaz (2014), which relate the

connectivity found in the network with the possibility of financial crises. Moreover, they

are consistent with the results of Tilfani et al. (2019), who found evidence in favour of the

FMH. The results show that before the subprime crisis, markets became more connected.

This implies a greater financial risk, as is identified, for example, by Diebold and Yılmaz

(2014); Acemoglu et al. (2015), or Wang et al. (2017). This increase in risk implies that a

given shock could be passed on to the entire network, increasing the chances of a contagion

effect. It should be noted that before the subprime crisis, network connectivity had been
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increasing and increased even after the Eurozone crisis, showing that the markets remained

strongly connected during this period, increasing the likelihood of risk.

A similar exercise to compare means was performed with this average degree indicator,

with the analysis across different periods presented in Table 3, as well as across different

time scales in Table 4. Once again, the ANOVA framework identifies that the means are

not all equal. In the 4-day time scale, it is possible to conclude that the average degree

increased from P1 to the remainder, albeit without a statistical difference between the

mean of P2 and P3. For the remaining cases, all the periods are inserted in different

subgroups but with P2 having the highest mean value. The results presented in Table 4

reveal that the average degree varies across the different time scales, although with higher

values in the lower time scales and lower values in the higher time scales.

Table 3: Mean comparison for the average degree across different periods

n = 4 n = 32 n = 64 n = 125

Pre-crises period (P1) 8.732 8.895 8.839 8.732
Crises periods (P2) 9.732 9.750 9.697 9.515
Post-crises period (P3) 9.743 9.697 9.391 9.112
Anova p-value 0.000 0.000 0.000 0.000
Homogeneous subsets P1 6= P2 = P3 P1 6= P2 6= P3 P1 6= P2 6= P3 P1 6= P2 6= P3

Source: Authors’ calculation.

Table 4: Mean comparison for the average degree across different time scales

Average degree

n = 4 (S4) 9.355
n = 32 (S32) 9.411
n = 64 (S64) 9.289
n = 125 (S125) 9.110
Anova p-value 0.000
Homogeneous subsets S4 6= S32 6= S64 6= S125

Source: Authors’ calculation.

Combining these results show that the crises influenced increased network connection,

with the second period having a clearly higher level of connection. After the crises had

passed, there is mixed evidence where, in some cases, the connectedness of the network

was lower than in the first period and higher in others. Even though these could be

considered contradictory results, they confirm the difference of behaviour in the different

time scales, consistent with the FMH.

5 Conclusion

Networks have been consolidated as instruments of financial market analysis due to the

possibility of analysing their topology (for networks or communities), as well as the cen-
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trality of the individuals forming them. Recently, the association between network con-

nectivity and the possibility of financial crises has been shown. It is known that extreme

events, such as crises, are very damaging to the economy. They increase national debt,

decrease income, and generate unemployment.

In this work, we use a wide sample, including both the subprime and Eurozone crises,

in order to analyse the pattern of connectivity. The results show that during these events,

network connectivity started to increase before the subprime crisis and intensified dur-

ing the Eurozone crisis. This situation demonstrates the increased financial risk of the

markets considered, according to Diebold and Yılmaz (2014); Tabak et al. (2014); Minoiu

et al. (2015); Acemoglu et al. (2015); Wang et al. (2017). This paper also contributes

by confirming that network connectivity increased in various time scales, and by using

the concept of global efficiency to calculate the financial relationships during the analysed

period of time.

Recalling the paper by Forbes and Rigobon (2002), it is important to determine

whether the increase of the correlations caused by a given crisis episode could be con-

sidered as a contagion or just an increase of interdependence. This depends on it just

being due to increased volatility or caused by any shock transmission mechanism. Con-

sidering that the network is built on the framework of filtered returns, and that there is

some evidence of increased connectedness of the network after the crises (compared to the

pre-crises period), we believe we are in the presence of a contagion effect. Moreover, it is

important to highlight the different behaviour in the different time scales. This is consis-

tent with the fractal market hypothesis and the possibility of investors having different

horizon preferences.

Associating network connectivity with the occurrence of financial crises makes it pos-

sible to create indicators to assist in predicting these events, so as to avoid or to mitigate

them. Therefore, this information can be used in hedge funds, large banks, or governments

to help prevent events such as crises. In the future, it will also be possible to analyse the

effects of the current crisis that was caused by COVID-19, which having a different origin,

could have a different impact on network connectivity behaviour.
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