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ABSTRACT: An abundant amount of literature has documented the limi-

tations of traditional unconstrained mean-variance optimization and Efficient

Frontier (EF) considered as an estimation-error maximization that magnifies

errors in parameter estimates. Originally introduced by Michaud (1998), em-

pirical superiority of portfolio resampling supposedly lies in the addressing of

parameter uncertainty by averaging forecasts that are based on a large num-

ber of bootstrap replications. Nevertheless, averaging over resampled portfo-

lio weights in order to obtain the unique Resampled Efficient Frontier (REF,

U.S. patent number 6,003,018) has been documented as a debated statistical

procedure. Alternatively, we propose a probabilistic extension of the Michaud

resampling that we introduce as the Probabilistic Resampled Efficient Fron-

tier (PREF). The originality of this work lies in addressing the information

loss in the REF by proposing a geometrical three-dimensional representation

of the PREF in the mean-variance-probability space. Interestingly, this geomet-

rical representation illustrates a confidence region around the naive EF associ-

ated to higher probabilities; in particular for simulated Global-Mean-Variance

portfolios. Furthermore, the confidence region becomes wider with portfolio re-

turn, as is illustrated by the dispersion of simulated Maximum-Mean portfolios.
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1 Preliminary

1.1 Portfolio Selection under Uncertainty

As are many economic decisions, portfolio selection problem is an uncertain decision-

making process, in the sense of Knight (1921). Limitations of the traditional uncon-

strained mean-variance (MV hereafter) optimization are particularly well documented by

an abundant amount of literature, including among others Michaud (1989), Frahm (2015),

and Da Silva et al. (2009).

As stated by Markowitz (1952), classical MV optimization postulates that an investor

has a preference for a portfolio of securities offering the maximum expected return for

some given level of portfolio risk as measured by returns variance. MV Efficient Frontier

(EF hereafter) defines the envelope curve containing the set of optimal portfolios for all

possible levels of portfolio risk. Since it is assumed that inputs are without uncertainty

and statistical estimation error; unconstrained MV optimizers are considered by Frahm

(2015) as estimation-error maximizers magnifying errors associated to input estimates.

Da Silva et al. (2009), among others, evidenced the instability of optimal solutions; since

small changes in the inputs lead to large changes in the EF, in particular, when covariance

matrix is ill-conditioned.

1.2 Empirical Illustration

We consider the 616 stocks from the MSCI U.S. Index and their market capitalizations

as of June 2020. A set of 20 U.S. large cap stocks was randomly drawn from among the

100 largest stocks, with continuous monthly total returns over 20 years for the sample

spanning from June 2000 to June 2020. Details of the dataset, including the description

of the 20 stocks and their annualized returns and standard deviations, are displayed in

Table 1. This standard methodology follows the literature, including - among others -

Michaud (1998), or Jobson and Korkie (1981).

Figure 1 illustrates the optimal portfolio allocation map that is related to the tradi-

tional unconstrained MV optimization; displaying optimal allocations from minimum risk

on the left-hand side, to maximum risk on the right-hand side. Each color represents

a particular stock from the selection universe. Furthermore, a vertical slice of the map

corresponds to the MV optimal weights of each stock in the optimal portfolio at a specific

level of portfolio risk. Naive MV optimal allocations exhibit sudden transitions from one

risk to another, while 11 stocks among 20 in the selection universe are missing over the

entire risk spectrum. From the investment perspective, naive MV portfolios are strongly

concentrated, requiring ad hoc investment constraints to generate artificial portfolio diver-

sification. This is particularly the case for the MM portfolio that is completely allocated

in the stock ATVI.

Michaud (1989) documented some techniques that address the limitations of tradi-
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Figure 1: Optimal portfolio allocation map related to the classical unconstrained MV
optimization

tional unconstrained MV optimization. Bayesian techniques assume the existence of a

prior for estimation-error adjustment of inputs; whereas Michaud (1989) found the exis-

tence of a confidence region below the EF, where portfolios are statistically equivalent.

Michaud (1998) invented (U.S. patent number 6,003,018) a portfolio resampling proce-

dure that dominates the naive Markowitz approach, becoming one of the most debated

findings in modern finance.

2 Portfolio Resampling

2.1 General Setting

In this section, we use some of the notations related to the portfolio-resampling procedure

introduced by Michaud (1998) and Frahm (2015).

Theoretical superiority of resampled efficiency is assumed to be found by addressing

the behavioral bias described by Mossin (1968); that investor decisions are particularly

myopic in the naive Markowitz single-period optimization where he processes each time

period as if it were the last one. Similarly, Frahm (2015) also found theoretical foundation

of the Michaud procedure in the case in which the investor is considered a noise trader,

whom prediction power is penalized by parameter uncertainty. Wolf (2007) relates the

Michaud portfolio-resampling procedure to the bagging statistical technique developed by
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Breiman (1996). Consider any statistical method used to predict a variable when given

some information on set ℵ; since ℵ is stochastic, prediction suffers from estimation risk.

Breiman (1996) proves that in the case of a quadratic loss function, estimation risk is

lower when averaging the forecasts based on a large number of bootstrap replications of

ℵ. In this sense, resampled efficiency lies in adding prediction variability, since bootstrap

replications are drawn from an empirical, but not true, distribution of ℵ.

Definition 1. Let a sample X = (X11, ..., Xmn, ..., XMN) of historical asset returns asso-

ciated to M observations and N securities. Unknown parameters of true mean vector

µ = (µ1, .., µn, ..., µN) and covariance matrix Σ = (Σpq)N×N are estimated by empirical

moments of sample mean µ̂ = (µ̂1, .., µ̂n, ..., µ̂N), and covariance matrix Σ̂ =
(

Σ̂pq

)
N×N

is

assumed to be symmetric and positive semidefinite. A sample X̂ =
(
X̂11, ..., X̂mn, ..., X̂MN

)
of asset returns is generated by Monte Carlo from an N-dimensional multivariate normal

distribution NN

(
µ̂, Σ̂

)
, where each component X̂n has distribution N (µ̂n, σ̂

2
n) with vari-

ance σ̂2
n = Σ̂nn. Parameter estimates µ̂ and Σ̂ are estimated by empirical moments ˆ̂µ and̂̂

Σ, and optimal weights of I portfolios
(

ˆ̂w1, ˆ̂w2, ..., ˆ̂wI

)
on the EF are then calculated.

Definition 2. The first optimal portfolio ˆ̂w1 is the Global Minimum-Variance (GMV here-

after) portfolio, i.e.

ˆ̂w1 = arg min
w∈=

wT ̂̂Σw (1)

and the last optimal portfolio ˆ̂wI on the EF is the Maximum-Mean (MM) portfolio, i.e.

ˆ̂wI = arg max
w∈=

wT ˆ̂µ (2)

The optimal portfolio ˆ̂ws for s ∈ [1, I] is the Maximum Sharpe ratio (MS) portfolio, and

for simplicity, risk-free rate is not considered, i.e.

ˆ̂ws = arg max
w∈=

wT ˆ̂µ√
wT ̂̂Σw (3)

It is assumed that the set of feasible portfolios = ⊆
{
w ∈ RD : wT1 = 1, w ≥ 0

}
be-

longs to a D-dimensional Euclidean simplex. The other I−2 optimal portfolios maximize

portfolio return ŵT
i

ˆ̂µ such that wi ∈ = for some given level of standard deviation√
wT

i+1
̂̂
Σwi+1 −

√
wT

i
̂̂
Σwi =

√
wT

i
̂̂
Σwi −

√
wT

i−1
̂̂
Σwi−1 (4)

i = 2, ..., I − 1

Definition 3. Let ˆ̂wij the efficient portfolio i = 0, 1, ..., I of draw j = 1, ..., J , repeating the

previous steps J−1 times and then averaging the I mean portfolios ˆ̂wij of the J simulated
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EF for each level of standard deviation ˆ̂σi determines the efficient portfolios ¯̂wi of the

Resampled Efficient Frontier (REF hereafter); i.e.

¯̂w =
1

J

J∑
j=1

ˆ̂wij, (5)

i = 0, 1..., I

For numerical purpose, the number of efficient portfolios considered on the EF is

I = 100 corresponding to the same grid of I standard deviation points ˆ̂σi, and the number

of draws considered for simulated EF is J = 1, 000.

Figure 2a illustrates the optimal portfolio allocation map related to the resampled MV

optimization, displaying optimal allocations from minimum risk at the left-hand side, to

maximum risk at the right-hand side. Resampled MV efficiency lies in some desirable

properties when compared to naive MV efficiency. First, the optimal allocation map

shows smoother transitions from one risk to another, including at significant levels all the

20 stocks from the selection universe. From the investment perspective, resampled MV

portfolios that are more diversified than the naive MV portfolios that are displayed in

Figure 1. This is exhibited by the MM portfolio that is allocated in five stocks; including

ATVI (72% vs 100% in 1), SHW (13%), TJX (7%), MU (6%), and GILD (2%) as well as

others.

Figure 2b exhibits naive EF in the blue dotted curve and REF in the red dotted curve

in the MV bidimensional space. This is from a minimum portfolio risk as seen on the

left-hand side to maximum portfolio return as seen on the right-hand side. EF and REF

are quite close in the MV space; specifically when considering the GMV portfolio. It

suggests that optimizations produce quite similar optimal solutions. Portfolio resampling

systematically both lowers and shortens the efficient frontier, lowering portfolio expected

return and restricting portfolio risk to a narrower range.

2.2 Theoretical Limitations

Proclaiming that there is no theoretical argument as to why original portfolio resampling

should dominate other portfolio optimization procedures; Scherer (2002) states “What

is not clear, however, is why averaging over resampled portfolio weights should repre-

sent an optimal portfolio construction solution to deal with estimation error.” Similarly,

Markowitz and Usman (2003) dictate that the Michaud approach dominates the Bayesian

strategies, but has “serious statistical and decision theoretic limitations.”

For illustration; Figure 3 displays REF (red dotted curve), simulated EF (blue dotted

curves), and GMV (yellow dot), MM (green dot), and MS (cyan dot) portfolios for each

simulated EF. The REF curve is the single frontier that consists in the collection of the

I optimal portfolios ¯̂wi, calculated by averaging the I mean portfolios (w̄1, w̄2, ..., w̄I)
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Figure 2: Properties of portfolio resampling on the optimal allocation map and the rep-
resentation in the mean-variance space

(a) Optimal portfolio allocation map related to the resampled MV optimization

(b) Resampled Efficient Frontier and classical Efficient Frontier
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from the J simulated EF curves. Special cases of optimal portfolios on the EF are GMV

portfolios ˆ̂w1, MM portfolios ˆ̂wI , and MS portfolios ˆ̂ws.

Figure 3: Resampled Efficient Frontier (REF), simulated Efficient Frontiers (EF), and
special optimal portfolios

Figure 3 illustrates information loss when averaging over resampled weights; exhibiting

a large region around the REF where assumed inefficient portfolios become statistically

efficient at a specific level of probability. The confidence region grows as the portfo-

lio expected return increases, reflecting a higher estimation error of the return and risk

estimates. This is particularly evident when considering special cases of optimal portfo-

lios, since MM (green dots) portfolios are substantially more dispersed across the mean-

variance space than both MS (cyan dots) and consequently GMV (yellow dots) portfolios.

2.3 Probabilistic Extension

In this section, we propose a probabilistic extension for the Michaud resampling procedure.

This is because averaging over resampled portfolio weights is documented as a debated

statistical procedure in the literature. We use the notations related to the Kernel Density

Estimator (KDE hereafter), which was introduced by Hill (1985).

Definition 4. Let the sample
ˆ̂
Mi =

(
ˆ̂µi1, ˆ̂µi2, ..., ˆ̂µiJ

)
of J empirical estimates of mean

portfolio returns associated to efficient portfolios ˆ̂wij =
(

ˆ̂wi1, ˆ̂wi2, ..., ˆ̂wiJ

)
for a same level
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of standard deviation ˆ̂σi. The true probability density functions f ˆ̂
Mi

=
(
f ˆ̂
M1
, f ˆ̂

M2
, ..., f ˆ̂

MI

)
of mean portfolio returns

ˆ̂
Mi are estimated for x ∈ R by the kernel density estimators

f̂ ˆ̂
Mi

=
(
f̂ ˆ̂
M1
, f̂ ˆ̂

M2
, ..., f̂ ˆ̂

MI

)
defined as

f̂ ˆ̂
Mi

(x) =
1

nh

J∑
j=1

K

(
x− ˆ̂

Mi

h

)
(6)

where K (·) is the kernel smoothing function, J is the sample size, and h is the bandwidth

parameter controlling the smoothness of the estimated probability density curve. Empirical

estimate of probability mass function p̂i (m) at standard deviation ˆ̂σi is

p̂ ˆ̂
Mi

(m) = P
(

ˆ̂
Mi = m

)
=

∫
u∈R

f̂ ˆ̂
Mi

(u) du (7)

Let Φ : = → R3 be the function mapping feasible efficient portfolios and defined by

Φ
(

ˆ̂wij

)
=
(

ˆ̂
Mi, ˆ̂σi, p̂ ˆ̂

Mi

)
. Function Φ defines the Probabilistic Resampled Efficient Fron-

tier (PREF hereafter), mapping the functions for empirical estimates of mean portfolio

returns
ˆ̂
Mi, standard deviation ˆ̂σi, and probability p̂ ˆ̂

Mi
of efficient portfolios ˆ̂wij, i.e. Mean-

Variance-Probability (MVP) space.

Figure 4 illustrates the geometrical three-dimensional representation of the PREF in

the space Φ
(

ˆ̂wij

)
=
(

ˆ̂
Mi, ˆ̂σi, p̂ ˆ̂

Mi

)
. Yellow areas are associated to higher estimated prob-

abilities of realization of the mean-variance couple
(

ˆ̂
Mi, ˆ̂σi

)
. The contour representation

exhibits a confidence region around the naive EF of Figure 1, which is associated to higher

probabilities of realization. This observation is also illustrated in the three-dimensional

surface by the yellow ridge region around the naive EF. Besides, probabilities are the

highest around the simulated GMV portfolios ˆ̂w1 as is clearly exhibited by the contour

representation, and the confidence region becomes wider with expected portfolio return,

as is illustrated by the substantial dispersion of simulated MM portfolios ˆ̂wI in Figure 3.

3 Conclusion

In this contribution, we proposed an extension of the portfolio resampling procedure

introduced by Michaud (1998). This paper is based on the theoretical superiority of

resampled efficiency; which is assumed to lie in addressing the well-known behavioral

bias that investor decisions are particularly myopic in the naive Markowitz single-period

optimization where he processes each time period as if it were the last one. The orig-

inal Michaud portfolio-resampling procedure has been related to the bagging statistical

technique. This includes mitigation of parameter uncertainty and estimation risk by av-

eraging the forecasts based on a large number of bootstrap replications. Nevertheless,
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Figure 4: Geometrical three-dimensional representation of the PREF in the space

Φ
(

ˆ̂wij

)
=
(

ˆ̂
Mi, ˆ̂σi, p̂ ˆ̂

Mi

)
, where estimated empirical probability p̂ ˆ̂

Mi
is illustrated by color

bars

(a) Contour representation

(b) Three-dimensional surface plot

there is an abundant amount of literature including Scherer (2002), or Markowitz and

Usman (2003), as well as others, that have documented the statistical pitfalls of Michaud

portfolio resampling, which was investigated as debated. There is no theoretical argu-
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ment why averaging over resampled portfolio weights in Michaud (1998) should dominate

other portfolio optimization procedures. Information loss when averaging over resampled

weights is illustrated by a large region around the Resampled Efficient Frontier (REF) of

Michaud (1998); wherein assumed inefficient portfolios become statistically efficient at a

specific level of probability.

This paper addresses the information loss of the REF when averaging over resampled

portfolio weights by deriving a probabilistic extension of the REF that we introduce as

the Probabilistic Resampled Efficient Frontier (PREF). The originality of this work lies

in the geometrical three-dimensional representation of the PREF in the mean-variance-

probability (MVP) space, which is associated to the efficient portfolios. Interestingly, this

geometrical representation illustrates a confidence region around the naive EF associated

to higher probabilities of realization; specifically when considering the GMV portfolio.

Furthermore, confidence region becomes wider with expected portfolio return, as is illus-

trated by the dispersion of MM portfolios. This theoretical framework appears useful to

perform robust portfolio optimization by considering parameter uncertainty.

Following this work, we see further research in introducing a probabilistic approach

for other portfolio techniques to exhibit confidence region around optimal portfolios.
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Appendix

Table 1: The dataset of 20 large cap stocks was drawn randomly from the 100 largest
stocks in the MSCI U.S. Index and present 20 years of complete monthly total returns
from June 2000 to June 2020. Returns and standard deviations are annualized

Ticker Company Return Std deviation

LOW LOWE’S COS 0.1811 0.2812
TGT TARGET CORP 0.1242 0.2635
MU MICRON TECHNOLOGY 0.1053 0.5013
CMCSA COMCAST CORP A (NEW) 0.0961 0.2413
HON HONEYWELL INTERNATIONAL 0.1365 0.2745
AMAT APPLIED MATERIALS 0.0950 0.3648
TJX TJX COMPANIES 0.1901 0.2202
IBM IBM CORP 0.0573 0.2519
ORCL ORACLE CORP 0.0685 0.3040
WMT WALMART 0.0716 0.1810
UPS UNITED PARCEL SERVICE B 0.0768 0.1974
SHW SHERWIN-WILLIAMS CO 0.2078 0.2226
COST COSTCO WHOLESALE CORP 0.1481 0.2041
MMC MARSH & MCLENNAN COS 0.0861 0.2187
GILD GILEAD SCIENCES 0.2311 0.3097
CB CHUBB 0.1205 0.2164
ADP AUTOMATIC DATA PROCESS 0.1048 0.2011
GE GENERAL ELECTRIC CO -0.0292 0.2867
ATVI ACTIVISION BLIZZARD 0.3271 0.3892
PFE PFIZER 0.0335 0.1914
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