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ABSTRACT: This paper explores the effect of real estate news sentiment on

the stock returns of Swedbank and SEB Bank, which are leading banks in

Sweden and the Baltic region. For this purpose, we have selected sentiments

from news about real estate in the markets of these banks in Sweden, Estonia,

Latvia, and Lithuania between 4 January 2016 and 19 February 2019. Esti-

mation results showed that sentiments about the housing market affect stock

returns for both banks, and the effect is different for positive and negative

news. We also found that there is a difference in the stock returns of these

banks in terms of when and to what extent they react to news coming from

the Baltic States and Sweden. Moreover, we found that the number of neg-

ative news affects the stock returns of the banks more than the strength of

the news. We also apply several GARCH specifications to explore if negative

and positive news affect the volatility processes to some extent. We found

out that the volatilities are explained better by the GJR-GARCH and NA-

GARCH models. Overall, the volatility of SEB stock returns depends more

on the news sentiments compared to the volatility of Swedbank stock returns.
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1 Introduction

The Nordic and the Baltic banking sectors are closely connected. Two banks which are

systematically important to the Baltic financial system, namely Swedbank and SEB, are

highly exposed to risks in their real estate home market in Sweden. Moreover, we cannot

put aside the risk coming from other home markets in the Baltic states. Real estate

news appearing in all markets can influence for the banks’ activities related to lending

services, and impact mortgage volume growth. As a result, we can expect an impact on

the profitability of these banks and their stock price returns.

News regarding a housing shock and future real estate crash is attracting more and

more attention. This is happening both in Sweden and in the Baltics. Although the

grounds for such discussions about possible market exposure are different for all countries,

the result might have the same effect.

The Swedish economy is characterised as exhibiting fast growth, declining unemploy-

ment, population increase, and low-interest rates. On the other hand, the debt burden

rising faster than household incomes is also observed (Statistics Sweden, 2019). The com-

bination of these factors is the reason for active discussions in social media and for (loud)

headlines in news articles. In addition, even after the Swedish Finansinspektionen intro-

duced measures to handle the risks associated with the rise in household debt, the tension

in society and among investors remains.

Baltic news channels also raise the topic of real estate market vulnerabilities. However,

factors influencing such discussions differ from that of the Swedish economy. Solid eco-

nomic growth in Baltic countries is followed by increased activity on the housing market

as capital cities, large cities, and resorts are becoming hot locations for real estate objects.

The Estonian economy does not show any signs of overheating, as there is no structural

economic imbalance. The Lithuanian market is being actively boosted due to rising in-

vestments. In the case of Latvia, the residential market is growing due to an increase

in the average salary (Ober Haus Report, 2018). Nevertheless, there is concern in the

media about a repeat of the housing bubble that happened in the years 2005–2010 in the

Baltic states. Therefore, the aim of this paper is to study the extent to which this tension

in the media over real estate markets in Sweden and the Baltics can influence the stock

returns of the Swedish banks. To this end, we enhance traditional econometric models

using a new component – news sentiment. Such a simultaneous use of text analysis and

econometric analysis can potentially benefit the financial world and draw attention to the

importance of tracking the market mood. In particular, we use the autoregressive moving

average (ARMA) models with news sentiment variables to estimate the conditional mean

for stock returns. The ARMA model makes it possible to identify the best model for

a conditional mean equation, and its residuals can be used further to estimate GARCH

specifications.

To gather sentiment data, we used open-source tools and libraries, such as the Python

library ”Beautiful Soup” to conduct web scraping of news pages, and the VADER model
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for sentiment analysis (Hutto and Gilbert, 2014). Moreover, we wrote an algorithm using

open-source libraries and tools, instead of using the news analytic and data gathered by

commercial providers, as was done for instance by Sidorov et al. (2014a); Verma and

Soydemir (2009); Yu (2014).

This study contributes to the literature by investigating real estate news sentiment

for a period between 4 January 2016 and 19 February 2019. We take into consideration

news related to the real estate market in countries which are the home markets of the

banks Swedbank and SEB, and its effect on the returns for these banks. In addition,

we consider asymmetrical effects of the news sentiments in our model. To the best of

our knowledge, there are no other papers investigating the real estate news sentiments

in Swedish and Baltic markets, and their effect on these banks’ stock returns. Most

studies consider company news and other generalized financial news columns and investor

sentiments as explanatory factors for stock price movements (Tumarkin and Whitelaw,

2001; Groß-Klußmann and Hautsch, 2011; Li et al., 2014; Arik, 2011). Housing market

sentiments are mostly considered as a factor for real estate price prediction (Soo, 2018).

The paper is further divided into five sections. Section 2 contains a review and dis-

cussion of the literature on the impact of news sentiment on stock prices, the linkages

between banks and the real estate market, and approaches to stock price modelling. Sec-

tion 3 provides description of the methods used for data collection, the procedure for

news sentiment estimation and an overview of the econometric models used. Section 4

presents the data used for modelling and provides its main characteristics considered later

in the modelling part. Section 5 reveals the results and interpretations. Finally, Section 6

concludes the paper.

2 Literature Review

2.1 News Sentiment and its Impact on Stock Prices

Nowadays, there are huge volumes of publicly accessible and quickly distributed news,

and this amount is increasing. This makes news one of the main sources of information

that helps form opinions and support decision-making. In addition, the news is one of the

main sources which forms and reflects the market behaviour at the same time. And this

is why behavioural economists believe that the understanding of the whole market lies in

understanding the behaviour of market players (Arik, 2011). News analytics is a highly

popular research topic due to its effective application in predictions in regard to market

volatility, prices and trading volumes predictions (Sidorov et al., 2014a). In finance, news

sentiment is considered an event and a quantitative reflection of information. Simply

saying it measures the emotional tone of available news, and its possible values can be:

positive, negative or neutral. News sentiments expressed numerically can be used as a

component for mathematical and statistical models (Sidorov et al., 2014a).
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Different authors, such as Kothari and Shanken (1997), De Long et al. (1990) analysed

the relationship between news sentiment and stock returns. Evidence was found that how

positive and negative sentiment influences market volatility differs, and this was proved

to be substantial in the case of negative sentiment (Engle and Ng, 1993; Tetlock, 2007).

But if we talk about the use of news sentiment as a factor, Tetlock (2007) was the first

to prove its significance in a predictive model. Later, Tetlock et al. (2008) obtained

better prediction results in comparison with forecasts prepared by analysts by applying

the ”Bag-Off-Words” model for news sentiment analysis (Harris, 1954).

News sentiment in predictions of stock prices is not new but it is still an elusive concept

(Yu, 2014). The classical theory about stock price formation is that asset price reflects all

available market information (Fama, 1965). However, Fisher and Statman (2000) argued

and proved that sentiment is a considerable part of asset price formation.

Before the active spread of the internet in the world, there were quite many studies

about the influence of macroeconomic news (Ederington and Lee, 1993) and also the

impact of messages coming from the stock market (Mitchell and Mulherin, 1994). After

an increase in the internet connection coverage, information spread in the World Wide

Web became to be actively used for explaining the stock price changes; for instance,

by Antweiler and Frank (2004); Tetlock (2007); Engelberg and Parsons (2011). Today,

news sources not only include official news agencies or television outlets, but also publish

company reports, publicly available statistics, Security Exchange Commission reports - all

of these are known as ”pre-news” and are the first to influence the public mood (Sidorov

et al., 2014a). Moreover, more power, in the sense of the number of people covered,

is getting wielded by social media (e.g. social network posts, blogs, tweets, etc.). For

example, anonymised Facebook data is commonly used to evaluate people’s beliefs, as

was done by Bailey et al. (2017) to investigate home buyers’ beliefs regarding future price

movements and how this could impact decisions regarding mortgage leverage.

The analysis of news releases and their impact on the financial world was particularly

important during the euro-zone sovereign debt crisis. Starting with Greece in early 2010,

Ireland, Portugal, Spain and Cyprus required financial bailouts or assistance in the next

few years. This was followed by the Brexit voting in 2016, which brought some specula-

tions on the EU economy. Afterwards, the news and speculations were further fuelled by

the worsened situation of the Italian banks. Acharya et al. (2018) provides a discussion on

the time line, causes and effects of the euro-zone debt crisis, while Beetsma et al. (2013,

2017) analyses the effect of the news sentiments on the euro-zone sovereign years during

the crisis period.

Official news channels such as Thomson Reuters, Bloomberg, Dow Jones, and the Wall

Street Journal provide reliable information which is used by investors in forming their

opinion about future stock price movement. But blogs, forums, and social media form

the opinions of the general public, and their popularity is growing (Yu, 2014). In many

cases, these resources create informational topics for mentioned ’reliable’ sources. The
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impact and predictive power of blogging platforms, like Twitter, was studied by Bollen

et al. (2011); Zhang et al. (2011); Ranco et al. (2015) and others. Deng et al. (2018)

used a large microblog data set to analyse the effect of positive and negative microblog

sentiments on the stock returns. However we should take into account that sentiments

taken from social media differ in some sense from the overall news sentiments, it can be

described more precisely as public mood, but it is still a valuable factor for daily stock

price movement prediction (Yu, 2014).

The impact of news sentiment has been proved using different types of econometric

models. Arik (2011), using GARCH-in-mean models with a combination of 17 exter-

nal variables in the mean equation, found a positive and significant relationship between

changes in sentiment and S& P 500 excess returns. Earlier, Verma and Soydemir (2009)

investigated stock market returns and investor sentiment relationships using a Value at

Risk model. But, it has been proved that GARCH models better explain the financial

fat-tailed data with excess kurtosis. Furthermore, Sidorov et al. (2014a) considered the

GARCH-Jumps model augmented with news intensity and proved that it has a better per-

formance in comparison with traditional GARCH model with autoregressive conditional

jump intensity described by Maheu and McCurdy (2004).

2.2 Real Estate Market and Bank Stock Returns

Banks are highly exposed to the real estate market (Igan and Pinheiro, 2010; Martins et al.,

2016; Kwan, 2019). This functions via the following scenario: when the housing market

has a downtrend, banks have less capital means and their expansion will be shortened,

and the most significant changes for the population might be a credit reduction.

The role of the real estate market in the pricing of bank stocks was studied by a

number of authors. Real estate market risk and its influence on US bank stocks were

estimated by Carmichael and Coën (2018). Also, the high sensitivity of stock returns to

changes in real estate returns was shown by He et al. (1996). Moreover, the vast majority

of studies have explored the effects of the real estate crisis on stock prices dynamics. The

main idea behind their study results is that financial institution stock price movements

and the level of its real estate exposure are significantly connected (Ghosh et al., 1997;

Martins et al., 2016; Igan and Pinheiro, 2010). But it is important to mention that the

size of bank matters. As was discussed in papers Mei and Lee (1994); Mei and Saunders

(1995) and Ding et al. (2017), greater sensitivity to changes in the housing market is

mostly experienced by small banks.

Numerous studies have been carried out to understand the influence of financial news

on stock returns, and, the main conclusions are about the need to include sentiment fac-

tors in the prediction models (Kelly, 2016; Gupta and Banerjee, 2019). Soroka (2006)

finds strong evidence for the asymmetric responses, stating that negative economic news

generate a bigger impact on the individuals’ attitudes. Cepoi (2020) considers the asym-

metric dependence between the stock market returns and news during the Covid-19 crisis.
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Following the previous research, we used the news sentiment as an explanatory factor for

banks’ stock returns and considered the asymmetric effect of news on the stock return

behaviour.

3 Methods and Analysis

3.1 Data Collection and Aggregation

In order to collect and structure a text, we decided to use Python as the main programming

language due to the availability of the necessary libraries and working web scrappers,

which allow us to obtain the article’s text from online sources automatically. All the web

page URLs with relevant news were provided in a separate file with a .csv extension. In

order to read the links of pages, we used the Python Data Analysis Library - ”Pandas”

(NumFOCUS), and its function ”pandas.read csv”.

Every web page is compiled using ”Hypertext Markup Language”(HTML), and special

tags help to identify the beginning and end of the text placed on the web page as well

as point to other parts of the article, such as the date of publishing or heading. Web

scrapers navigate through provided web URLs, looking for the requested information

using HTML tags and then download the text upon the user’s request. We use the

Python ”Beautiful Soup” (Richardson) library for parsing web pages. Its functions such

as ”soup.find”, ”soup.title” or ”soup.get text” are used to extract text from the web page.

One of the difficulties when dealing with web scrapping is that using the same markup

language for web pages does not require that the same tags for formatting are used. This

is inconvenient when writing a universal algorithm to recognize the necessary tags and

download the text. For instance, when inspecting the web pages’ structure, we found that

in the case of The Local SE web pages the body of the article was contained under the

tag ”div id =”article-body”, while for Reuters, this tag is ”div class =”StandardArticle-

Body body”. This is why we have decided to create an algorithm which only requires a

couple of tags as input pointing out the part of the web page containing the necessary

text.

The resulting algorithm is capable of extracting the main part of the article, its heading

and publishing date from different web sites. The only manual step is to inspect the web

page and identify tags which lead to the necessary part of the page. Moreover, this

algorithm removes unnecessary tags, for example, those used to format the text, merge

the heading and the main part of the article to the one data object and save it with the

corresponding date when the article was published. This data will be used to construct

the sentiment time series. Such structured and stored news, together with dates is called

the text corpus.
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3.2 Text Analysis and Getting the Sentiment Time Series Data

Sentiment analysis is one of the areas in the field of Natural Language Processing (NLP)

which aims to identify the sentiment of the human text -emotions and attitude- which

is delivered by the author via the text. For computers, reading and understanding the

language is a highly complex process, involving complicated algorithms with thousands

of lines of code.

There are several NLP libraries for Python such as spaCy (Explosion AI, 2019), NLTK

(NLTK Project, 2019) and TextBlob (Loria, 2018), which provide plenty of useful func-

tions to facilitate the text analysis for researchers and interested parties from fields other

than NLP.

Most of the sentiment analysers are based on sentiment lexicon, a list of words labelled

either positive, negative or neutral. There are several widely used lexicons, such as LIWC

(Linguistic Inquiry and Word Count), mostly used for social media texts, where it is

possible to estimate the intensity of words. Hu and Liu (2004) describes the sentiment

of text at a high level but has no ability to recognise emoticons or acronyms; ANEW

(Affective Norms for English Words) (Bradley and Lang, 1999) is more advanced because

it provides emotional ratings for words in list; SenticNet1 also contains estimated sentiment

polarities using the range from -1 to 1. The latter is used for the VADER model (Hutto

and Gilbert, 2014) which is applied for sentiment analysis in our research.

VADER (Valence Aware Dictionary and Sentiment Reasoner) is an open-source tool

and a rule-based model used for general sentiment analysis. The lexicon and rules used

by VADER are open and easily accessible, which makes its use for research purposes

advantageous (Hutto and Gilbert, 2014).

The main task for the evaluation of text sentiments is to calculate sentiment polarity.

Before applying the sentiment analyser, in most cases, data pre-processing is needed. In

our case, this was carried out after web scraping. Afterward, the ”polarity scores” method

is used to obtain polarity indices for the text data.

Sentiment values for every word used in the text are calculated using the ”polar-

ity scores” function in combination with the lexicon of the VADER model (Hutto et al.,

2019). The result of the primary calculations is that every word has precalculated values

- polarity scores with the format: [x,y,z], where x, y, and z are negative, positive and

neutral sentiments, respectively. The compound value is calculated via Equation 1 using

the sum of all sentiments and the normalisation function, which places the value in the

range [-1,1] where a positive sentiment corresponds to a compound score greater than

or equal to 0.05, a neutral sentiment is located in a range (-0.05, 0.05), and a negative

sentiment corresponds to values less than or equal to -0.05. This indicator is used further

1https://sentic.net/

http://liwc.wpengine.com/
http://liwc.wpengine.com/
https://sentic.net/
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in econometric models. The function has the form:

C =
S√

S2 + 15
(1)

where C is the compound sentiment score, and S the sum of negative (x), positive (y)

and neutral (z) scores. The value 15 is the default normalization constant mentioned in

(Hutto and Gilbert, 2014).

The main advantage of the VADER model is that it takes into account, for example,

exclamation marks, which show the intensity of the expressed emotion, the capitalization

of words, conjunctions signalling that there is a change in sentiment polarity, and even

emojis, slang words and emoticons (e.g. ”:D”, ”:)”).

Afterward, the VADER model is included in the algorithm implemented in Python.

Therefore, as soon as the text data is extracted from the web page, it is used by VADER

to evaluate the sentiment and generate time series used as an input for the econometric

models. The VADER model and the calculated sentiments are saved to time series for

further modelling. The algorithm can be visualized by the flowchart (Figure 1).

Figure 1: The algorithm used to extract news and estimate its sentiment

Note: This flowchart represents an algorithm used to extract the news from web pages, calculate the
sentiment of text and save as a time series with the date the article was published.

Source: Authors’ depiction of the steps in the algorithm.

3.3 Overview of Models Used

The base model we consider is an ARMA(p, q) model, where p and q are the autoregres-

sive and moving average orders, respectively. In all the models that follow, the ARMA

parameters satisfy the typical stationarity and invertability conditions. We call the base

model Model 1.0 and it is nested in Model 1.1. If we set the coefficients of the news

components equal to zero in Equation 2 of Model 1.1, we obtain Model 1.0 equation. The

choice of orders p and q is discussed in Section 5.
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Model 1.1. ARMA(p, q) model with news component

The news sources we consider are from Sweden and the Baltic States. Moreover, we

include news from Reuters and other international news sources to take into account the

international news. News travels very fast in the financial world, and therefore we wouldn’t

expect many lags for the news variables. Another restriction is that we consider many

news variables. Therefore the number of lags should be low for a parsimonious model. The

preliminary estimations with two lags for news variables gave the most sensible model.

rt = µ+

p∑
i=1

βirt−i + εt +

q∑
j=1

θjεt−j+

+ δ10Reuters t + δ20TheLocalt + δ30Otherst + δ40Balticst+

+ δ11Reuters t−1 + δ21TheLocalt−1 + δ31Otherst−1 + δ41Balticst−1+

+ δ12Reuters t−2 + δ22TheLocalt−2 + δ32Otherst−2 + δ42Balticst−2

(2)

In Equation 2, news variables are defined with the names of their sources (as explained

in section 4.1) and are by construction in the range [−1, 1], where a positive news is higher

ranked than negative news. Therefore any increase in the news variable indicates less bad

news or more good news; hence, should have a positive effect on the returns. This positive

effect may come on the same day or with a delay. Therefore, we apply the following

restrictions on the news sentiment coefficients: δji ≥ 0 for all i = 1, ..., 4, j = 0, 1, 2.

For the next models, we distinguish negative and positive news in the equations in

order to take into account their asymmetric effects.

Model 1.2. ARMA(p, q) model with asymmetric effect of news, neutral news dis-

carded

In Equation 3, a news sentiment is considered to be positive (superscript ”+”) if its

value is higher than 0.05, and negative (superscript ”-”) if its value is less than -0.052.

Otherwise, the news sentiment is neutral. Neutral news is discarded because TheLocal

and Others news sources do not have neutral news. Considering negative and positive

sentiments separately is in line with Soroka (2006), where the author pointed out the

2The values 0.05 and −0.05 are given by the construction of the news sentiment indices.
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larger impact of negative economic news on individuals’ attitudes.

rt = µ+

p∑
i=1

βirt−i + εt +

q∑
j=1

θjεt−j+

+ δ−10Reuters−
t + δ−20TheLocal

−
t + δ−30Others

−
t + δ−40Baltics

−
t +

+ δ−11Reuters−
t−1 + δ−21TheLocal

−
t−1 + δ−31Others

−
t−1 + δ−41Baltics

−
t−1+

+ δ−12Reuters−
t−2 + δ−22TheLocal

−
t−2 + δ−32Others

−
t−2 + δ−42Baltics

−
t−2+

+ δ+10Reuters+
t + δ+20TheLocal

+
t + δ−30Others

+
t + δ−40Baltics

+
t +

+ δ+11Reuters+
t−1 + δ+21TheLocal

+
t−1 + δ−31Others

+
t−1 + δ−41Baltics

+
t−1+

+ δ+12Reuters+
t−2 + δ+22TheLocal

+
t−2 + δ−32Others

+
t−2 + δ−42Baltics

+
t−2

(3)

As discussed in Model 1.1, an increase in a news variable would mean less bad news

or more good news. It is trivial that more good news should increase returns. An in-

crease in the negative news sentiment would mean less bad news and therefore, this should

increase returns. The effect on the returns may appear on the same day or with a de-

lay. Therefore, the restrictions on the news sentiment coefficients are: δ−ji, δ
+
ji ≥ 0 for all

i = 1, ..., 4, j = 0, 1, 2.

Model 1.3. ARMA(p, q) model with merged news data (positive and negative news

distinguished)

In Equation 4, the News−t and News+t variables are the sum of negative and positive

news at time t, respectively. Given that in some dates there may be more than one piece

of news, we also consider the number of negative and positive news at time t with the

variables N−
t and N+

t , respectively. A related approach was considered by Sidorov et al.

(2014a), where the authors used the number of all relevant news as an exogenous variable

for the GARCH model and referred to this number as news intensity.

rt = µ+

p∑
i=1

βirt−i + εt +

q∑
j=1

θjεt−j+

+ δ−10News−
t + δ−11News−

t−1 + δ−12News−
t−2+

+ δ+20News+
t + δ+21News+

t−1 + δ+22News+
t−2+

+ δ−30N
−
t + δ−31N

−
t−1 + δ−32N

−
t−2+

+ δ+40N
+
t + δ+41N

+
t−1 + δ+42N

+
t−2

(4)

It was discussed before that an increase in the news sentiment affects the returns

positively. The same can be said about the number of positive news, that it affects the

returns positively. However, an increase in the number of negative news would decrease

the returns. These effects can be seen on the same day or with delay. Therefore, the

restrictions on the news sentiment coefficients are: δ+1i, δ
−
2i, δ

+
4i ≥ 0 and δ−3i ≤ 0, where
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i = 0, 1, 2.

To proceed with the conditional volatility modelling, we first identify the model that

fits the conditional returns best. For this purpose, we use the Akaike (AIC) and Bayesian

(BIC) criteria. From the chosen conditional mean model, we receive the estimated resid-

uals, ε̂t. We use this vector of estimated residuals to estimate the following GARCH

specifications. For simplicity, we assume the GARCH(1, 1) order and keep the focus on

the extensions of GARCH models3.

When modelling the volatility, we specifically focus on the asymmetric effects. In

the literature, asymmetric effects is a stylized fact observed in the volatilities of financial

returns, which suggests that volatility increases much more when a negative return shock

appears compared to a positive return shock of the same magnitude (Ghysels et al., 1996;

Asai and McAleer, 2006). In the models we discuss below, we also explore the possible

asymmetric effect of positive and negative news sentiments on conditional volatility.

In the following models, the notation is as follows: ht = V ar(rt|Ft−1) = V ar(εt|Ft−1) =

E(ε2t |Ft−1), where Ft−1 is the information available up to t − 1 and ht is referred to as

conditional variance or volatility, which is modelled via GARCH (1, 1) and its extensions.

Model 2.1. GJR-GARCH(1, 1) model with asymmetric news, neutral news dis-

carded

A commonly used model that takes into account the asymmetric effects is the Glosten,

Jagganathan and Runkle - GJR - GARCH model (Glosten et al., 1993). We present the

GJR-GARCH model with the news sentiment variables in the Equation 5.

ht = γ + (α1 + θIt−1) ε
2
t−1 + α2ht−1+

+ δ−10Reuters−
t + δ−20TheLocal

−
t + δ−30Others

−
t + δ−40Baltics

−
t +

+ δ−11Reuters−
t−1 + δ−21TheLocal

−
t−1 + δ−31Others

−
t−1 + δ−41Baltics

−
t−1+

+ δ−12Reuters−
t−2 + δ−22TheLocal

−
t−2 + δ−32Others

−
t−2 + δ−42Baltics

−
t−2+

+ δ+10Reuters+
t + δ+20TheLocal

+
t + δ30Others

+
t + δ40Baltics

+
t +

+ δ+11Reuters+
t−1 + δ+21TheLocal

+
t−1 + δ31Others

+
t−1 + δ41Baltics

+
t−1+

+ δ+12Reuters+
t−2 + δ+22TheLocal

+
t−2 + δ32Others

+
t−2 + δ42Baltics

+
t−2

(5)

In Equation 5, the dummy It−1 takes value 1 if εt−1 < 0. The volatilities ht are positive

if γ > 0, α1, α2 ≥ 0, and stationary if α1 + θ + α2 < 1. Asymmetric effects would occur if

3There are two reasons for this: the first is the same as in the conditional mean model, we chose
a parsimonious model to focus on the effect of news variables. In fact, we estimated higher orders of
GARCH model and GARCH(1, 1) was outperforming GARCH(p, q) models based on the Bayesian
criterion, which favors parsimonious models. The second reason is that we are motivated by the paper
of Hansen and Lunde (2005), who found out that for the IBM stock return data the higher orders of the
GARCH model cannot outperform the GARCH (1, 1). The latter was only outperformed by GARCH
models which allowed for asymmetric effects. In our paper we use such models as well: GJR-GARCH
and NAGARCH.
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θ > 0, because negative errors increase volatility more than positive errors.

Model 2.2. NAGARCH(1, 1) model with asymmetric news, neutral news discarded

We also consider that the asymmetric effect of the return shocks could be in nonlinear

form. For this reason, we employ the nonlinear asymmetric GARCH (NAGARCH) model

(Robert and Victor, 1993; León et al., 2005). We present the NAGARCH model with

news sentiment variables in Equation 6.

ht = γ + α1

(
εt−1 + δh

1/2
t−1

)2
+ α2ht−1
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−
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(6)

In Equation 6, the volatilities ht are positive if γ > 0, α1, α2 ≥ 0, and stationary if

α1 (1 + δ2) + α2 < 1. Given that:(
εt−1 + δh

1/2
t−1

)2
= ε2t−1 + δ2ht−1 + 2δεt−1h

1/2
t−1

the non-linear asymmetry in Equation 6 is generated by 2δεt−1h
1/2
t−1. As negative shocks

are expected to increase volatility, asymmetric effect would occur if δ < 0.

Both GJR-GARCH(1, 1) and NAGARCH(1, 1) discussed in Equations 5 and 6 nest

the baseline GARCH(1, 1) model. This can be seen by setting θ and δ equal to zero in

these equations, respectively.

In Equations 5 and 6 the effects of negative and positive news sentiments on the volatil-

ity are distinguished. Braun et al. (1995) and Malik (2011) state that volatility increases

strongly in response to bad news and decreases in response to good news. Following this

thought in Equations 5 and 6, an increase in the negative news sentiment would mean

less bad news and this would decrease volatility, hence δ−i,j ≤ 0, for all i = 1, 2, 3, 4 and

j = 1, 2, 3. On the other hand, if there is an increase in the positive news sentiment the

volatility is expected to decrease, which implies that δ+i,j ≤ 0, for all i = 1, 2, 3, 4 and

j = 1, 2, 3. Incorporating this reasoning to the positivity restrictions, in Equations 5 and

6, the volatilities ht are positive if γ > 0, α1, α2 ≥ 0. Moreover, one could impose the

restriction that γ −
∑

i

∑
j δ

−
i,j +

∑
i

∑
j δ

+
i,j > 0. This condition comes from the fact that

the news sentiment variables takes values between -1 and 1 and even in the extreme case

where the squared residuals and volatility is very close to zero and the news sentiments

take extreme values, the volatility stay positive. We didn’t impose this restriction, but
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we made sure that volatility stays positive in the estimations.

In all the ARMA models above, we assume that the error term is distributed normally.

Typically, financial returns have thick tailed distribution. Ghysels et al. (1996) discusses

the stylized facts about financial returns. Assuming that the returns are distributed

normally has some statistical advantages, including that the estimation becomes easier.

(Engle and Sheppard, 2001) In particular, when the errors are normally distributed, the

estimation of conditional mean and variance structures can be done separately. The re-

sulting estimator is a quasi-maximum likelihood estimator and it is consistent, asymptoti-

cally normal but not efficient (Bollerslev and Wooldridge, 1992; Engle and Sheppard, 2001;

Carnero and Eratalay, 2014). Since separating the estimation of mean and variance mod-

els would bring inefficiency due to the misspecification4, we use the Bollerslev-Wooldridge

robust covariance matrix. As Bollerslev and Wooldridge (1992) point out, this is a con-

sistent estimator of the White (1980) robust asymptotic covariance matrix, from which

one can obtain the heteroscedasticity consistent standard errors.

4 Data

We utilize two data sets for this research. The first contains all news sentiments gathered

for the selected topics, countries and times when the news was published. The second data

set is the daily adjusted closing stock prices of Swedbank and SEB Bank, both operating

in Sweden and the Baltic countries.

4.1 News Sentiments Data

The main difficulty in gathering data is to choose the most suitable sources that are able to

provide reliable and necessary information on a certain topic. In our selection criteria, we

intend to select the news about the housing market from Sweden and the Baltic countries

(Estonia, Latvia, Lithuania) and use this data for the sentiment analysis.

To this end, two main sources were chosen to search for news related to the Swedish

real estate market: ”The Local SE” – a portal that posts Swedish news in English, and

”Reuters” – an international news provider. Posts related to the real estate market in

Sweden appear more frequently in The Local news portal, and they are necessary to

capture possible interactions between daily stock price changes and news. Messages in

international news portals about real estate appear more rarely and only in cases of

high target-reader interest; or, in other words, when this news is highly important for

international audiences. Such news can be a signal for the market about upcoming up or

downturns. In addition, this type of news might influence market stability to a greater

degree.

4In this approach the misspecification is that when estimating the conditional mean parameters, the
model is assumed to be homoscedastic.
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To cover those periods when the main selected sources may not provide any articles,

we refer to other sources and look for them using the news aggregator ”Google News”

hereinafter referred to as ”Other Sweden”. To these sources, we also include such news

providers as ”Financial Times”, ”Business Insider Nordic”, ”Bloomberg”, ”The Wall Street

Journal”and others5. It was highly desirable for further modelling to decrease the number

of gaps in news sentiments data set, or simply, to have as many days as possible with at

least one news sentiment value.

Regarding the news from the Baltic countries, the main sources of information are

”ERR News”– Estonian Public Broadcasting service in English, English-language monthly

newspaper ”The Baltic Times”, ”Baltic News Network”, and others hereinafter referred to

as ”Other Baltics”. To find these, we refer to the previously mentioned news aggregator

”Google News”.

In order to find relevant content, we had to select the most precise keywords to direct

search engines towards news that might contain content useful for this analysis. We use the

following combinations to find articles about the Swedish market: ”Swedish real estate”,

”Real estate Sweden”, ”Swedish housing market”, ”Sweden housing”, ”Sweden property”,

”Construction Sweden”, ”Stockholm real estate”, ”Stockholm housing”, ”Stockholm flats”,

”Real estate bubble Sweden”. For the Baltic market, we use ”Baltics real estate”, ”Dwelling

prices in Baltic countries”, ”Housing market Baltics” and ”Baltic property prices”.

The best way to see what data we have is to plot it. Figure 2, presents the values

for news sentiments by country: Sweden, Latvia, Lithuania, and Estonia, and also news

published about the Baltic market in general. Two horizontal lines (y = 0.05 and y

= -0.05) were added to show how many news sentiment values are positive (above y

= 0.5 line), negative (below y = -0.05 line), and how many are neutral (between these

two horizontal lines). A more detailed explanation about sentiment scores is provided in

Section 3.

More positive Swedish news is provided by news portals other than ”Reuters” or ”The

Local SE” but the difference is not considerable – all positive news are distributed almost

equally. More negative Swedish news is provided by ”Reuters”, and the distribution is not

as equal as for the positive news.

For Baltic news, we cannot divide the results by news portals due to the difficulty in

finding such resources with sufficient news about the real estate market in these countries.

Yet taking into account all the sentiments we have, we can see that they are mostly positive

and concentrated near the maximum sentiment score. Negative sentiments are mostly

related to real estate news about the Baltic countries in general (”Baltics” in Figure 2),

and also about Estonia and Latvia.

It is also interesting to observe the difference in sentiments’ distribution of Swedish

news, and also for all Baltic countries news without dividing by country (Figure 3). Over-

all, we can see a considerable difference in the amount of negative news about the real

5See Appendix A for a list of all sources used.
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Figure 2: Real estate news sentiments by sources and countries

Notes: This figure plots real estate news sentiments by news sources and countries. News sources:
Other Baltics - all sentiments of news about Baltic countries, Other Sweden - all sentiments of Swedish

news except news from ”Reuters” and ”The Local SE” portals, Reuters - news about real estate in
Sweden published by ”Reuters”, The Local - news about real estate in Sweden published by ”The Local
SE” portal. Countries: Baltics - news about Baltic countries overall, EE - Estonia, LV - Latvia, LT -

Lithuania. The news between the horizontal lines are considered as neutral. Period: 04.01.2016 -
19.02.2019.

Source: Authors’ calculations.

estate market. Furthermore, for all markets, the neutral amount of news is extremely low,

and it was one reason why neutral sentiments were discarded for the estimation models,

in which we considered negative and positive sentiments.

From the histogram of news sentiments (Figure 4), we can see how sentiments are

distributed overall. It is clear that positive sentiments prevail, most of the negative

sentiments are in the range: (−0.8,−1), most of the positives are in the range: (0.9, 1).

To have a better overview of the data we scraped, we provide its descriptive analysis

in the Table 1. Statistical values confirm the conclusions made during the visual analysis

conducted previously.

The extreme values of the sentiments are very close to the maximum possible values

of the positive and negative sentiments. The mean value for news sentiments varies from

0.43 to 0.75 for news in the Baltic states. For Sweden, this value is much less indicating

that the Baltic region is more optimistic about their real estate market. But we should

take into account the fact that the standard deviation is big enough for all countries and

represents that sentiment fluctuations are high. If we look at the skewness of the sentiment

data for all states and apply the rule of thumb, we see that Baltic data is highly negatively

skewed, which means that a larger part of the sentiments presented in the data set for

these countries are above the average value - mostly positive. Only for Swedish data can
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Figure 3: Real estate news sentiments by source and countries

Notes: This figure plots real estate news sentiments by news source and country. News sources: Other
Baltics - all sentiments of news about Baltic countries, Other Sweden - all sentiments of Swedish news

except news from Reuters and The Local SE portals, Reuters - news about real estate in Sweden
published by Reuters, The Local - news about real estate in Sweden published by ”The Local SE”
portal. Countries: Baltics - news about Baltic countries overall, EE - Estonia, LV - Latvia, LT -

Lithuania, SE - Sweden. The news between the horizontal lines are considered as neutral. Period:
04.01.2016 - 19.02.2019.

Source: Authors’ calculations.

we state that the data is fairly symmetrical, as the skewness is closer to zero (-0.53). The

second value to pay attention to is excess kurtosis - a way to notice the outliers in the

distribution of data. Any value above 0 (Estonia, Latvia and in particular Lithuania)

indicates leptokurtic or heavy-tailed news sentiment data, and there is a probability that

we might have outliers. Regarding other excess kurtosis values, all of them are platykurtic

or simply, the data is light-tailed, and the outliers, which also can be present in data set

are smaller than those of the normal distribution.

The 10 most positive news sentiments are listed in the Table 2. For example, on

27.08.2018 an article gives a brief overview of the real estate market and what to expect

in the future in Estonia. The author states that the Estonian real estate market is stable

and low risks make it a good investment area6. Another example is that on 19.12.2018

an article writes about the attractive real estate market in Latvia, more specifically in

Vilnius and Kaunas, and about potential interest of the investors in Klaipėda7. From

6Source: https://blog.reinvest24.com/whats-going-on-with-the-housing-market-in-estonia
7Source: https://en.delfi.lt/archive/real-estate-experts-see-potential-of-klaipedacity.

d?id=79906703

https://blog.reinvest24.com/whats-going-on-with-the-housing-market-in-estonia
https://en.delfi.lt/archive/real-estate-experts-see-potential-of-klaipeda city.d?id=79906703
https://en.delfi.lt/archive/real-estate-experts-see-potential-of-klaipeda city.d?id=79906703
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Figure 4: Histogram of news sentiments

Notes: This figure plots the distribution of real estate news sentiments for the period: 04.01.2016 -
19.02.2019.

Source: Authors’ calculations.

Table 1: Descriptive statistics of news sentiments data

Country N Mean St.dev. Med. Min. Max. Skew. E.kur.

Baltics 20 0.43 0.75 0.74 -0.99 1 -1.07 -0.58

Estonia 34 0.64 0.57 0.94 -0.95 1 -1.53 0.96

Lithuania 15 0.75 0.47 0.95 -0.76 1 -2.22 4.09

Latvia 29 0.64 0.55 0.95 -0.98 1 -1.63 1.43

Sweden 155 0.24 0.75 0.54 -1 1 -0.53 -1.35

All 253 0.38 0.72 0.75 -1 1 -0.85 -0.86

Notes: This table shows descriptive statistics of news sentiments data by states for the period:
04.01.2016 - 19.02.2019. N - number of news sentiments available in data set, St.dev - standard

deviation of sentiments, Med. - median, Min./Max. - minimum and maximum sentiment score, Skew. -
skewness of the data, E.kur. - excess kurtosis of the data.

Source: Authors’ calculations.

Table 2 it can be seen that half of these 10 most positive news were published during

2018. Out of these 10 news, the amount of news describing the Baltic and Swedish real

estate market is the same. But taking into account that the data set of Swedish news

sentiment is much larger in comparison with Baltic countries, we can state that the news

in Baltic countries is more positive in comparison to Sweden. The same can be said when

taking into account the mean values of sentiments, the Swedish mean is the lowest among

all listed countries (Table 1).

The most negative news sentiments are given in Table 3. These news sentiments are

mostly for Sweden for different years. For example, on 04.07.2016 an article writes about
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Table 2: The most positive news sentiments

Date (Y-M-D) Sentiments States Region

2018-08-27 0.9990 Estonia Baltics
2018-12-19 0.9990 Lithuania Baltics
2018-02-01 0.9989 Sweden SE
2016-05-11 0.9984 Sweden SE
2016-07-20 0.9981 Sweden SE
2018-08-28 0.9973 Estonia Baltics
2017-04-28 0.9969 Sweden SE
2018-03-27 0.9965 Baltics Baltics
2016-06-10 0.9961 Latvia Baltics
2017-08-17 0.9961 Sweden SE

Notes: This table shows the 10 highest sentiments of news published during the period: 04.01.2016 -
19.02.2019. It also shows the name of the country (States column) and the region to which the

particular news refers.
Source: Authors’ calculations.

the lack of housing in Sweden and its impact on immigrants and startups8. One other

example is that on 03.08.2016 an article describes how Baltic states worry that Swedish

banks, when in crisis, have the possibility of withdrawing money from Baltic subsidiaries

to cover their losses in the domestic market, and this will negatively impact the economies

of the Baltic states9. We also see that few Baltic news is also placed at the top of the

negatives, but among them, there are only news related to the Latvian market or the

Baltic market in general.

Table 3: The most negative news sentiments

Date (Y-M-D) Sentiments States Region

2016-07-04 -0.9973 Sweden SE
2016-08-03 -0.9971 Sweden SE
2018-03-28 -0.9919 Sweden SE
2017-05-15 -0.9886 Baltics Baltics
2018-09-07 -0.9881 Sweden SE
2017-11-13 -0.9877 Sweden SE
2018-11-01 -0.9869 Sweden SE
2019-02-19 -0.9851 Sweden SE
2018-12-19 -0.9849 Sweden SE
2017-05-12 -0.9847 Latvia Baltics

Notes: This table shows the 10 lowest sentiments of news published during the period: 04.01.2016 -
19.02.2019. It also shows the name of the country (States column) and the region to what particular

news refers.
Source: Authors’ calculations.

As a visual representation of the most frequent words in the news, and an overall

understanding of the main topics covered in positive and negative news, we have used the

word clouds shown in Figure 5. The most frequently used words have larger font size and

8Source: https://www.ft.com/content/8961b57c-3872-11e6-a780-b48ed7b6126f
9Source: https://www.ft.com/content/33aa7868-595f-11e6-9f70-badea1b336d4

 https://www.ft.com/content/8961b57c-3872-11e6-a780-b48ed7b6126f
https://www.ft.com/content/33aa7868-595f-11e6-9f70-badea1b336d4
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are placed closer to the middle part of the word cloud10. It appears that the most positive

news contained keywords related to housing, shopping, city, center and macroeconomic

terms such as growth, investment and prices, while the most negative news contained

keywords such as housing, banks, Sweden, Swedish and prices. This word cloud could

suggest that negative news in the Baltics and Sweden concentrates on real estate and

banking in Sweden, which confirms the significance of the aim of this paper stated in

Section 1.

Figure 5: Word clouds

(a) 10 most positive news (b) 10 most negative news

Notes: Each word cloud represents the frequency of words used in 10 most positive 5a and 10 most
negative 5b news about real estate; the size of the word indicates its occurring frequency within selected

articles. The word clouds are illustrated only for visualization purposes.

Source: Authors’ calculations.

4.2 Stocks Prices Data

To analyse the stock returns, we start with daily series of adjusted closing stock prices

from Swedbank and SEB banks from 04.01.2016 to 19.02.2019. The adjusted closing stock

price is the price of last stock traded on a particular day which was adjusted according to

the relevant split and dividend paid out to investors (Balasubramaniam, 2018). Historical

stock prices data is downloaded directly from ”Yahoo! Finance”, and the quality of data

is assured because it is not stored locally but loaded directly from the web source to the

R software11.

To see how stock prices vary in time, we can look at Figure 6, which presents the

adjusted daily closing stock prices for Swedbank and SEB banks for the period: 04.01.2016

- 19.02.2019, and shows that there are some similarities in the behaviour of bank stock

prices.

10Word clouds are not used for analysis and are illustrated only for visualization purposes.
11https://www.r-project.org/

https://www.r-project.org/
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Figure 6: Adjusted daily closing stock prices

Notes: This figure plots adjusted daily closing stock prices for Swedbank and SEB banks measured in
SEK, for the period 04.01.2016 - 19.02.2019.

Source: ”Yahoo! Finance”.

An uptrend in Swedbank stock prices is observable after a considerable downturn at

the beginning of 2016, albeit with little certainty. For SEB Bank, a decline was observed

mostly from March 2016. Similarly for both banks, from July 2016 till March 2017, prices

climbed steadily, and remained almost the same with moderate fluctuations till October

2017. Past this date, Swedbank stock prices fell to a level slightly above 160 SEK per

share and remained within the range of 160–175 SEK till July 2018. For SEB Bank, the

situation was less positive – falls were present from autumn 2017 till the beginning of

June 2018. However, the stocks for both banks jumped considerably around summer and

mid-autumn 2018. The stock prices of Swedbank and SEB Bank don’t always move in

the same direction. Around February of 2018, the SEB Bank stock price had a negative

trend while Swedbank stock prices were rising. Also around March-April 2017, we can see

that SEB Bank stock prices enter to a decline trend after Swedbank stock prices which

may suggest late reaction. This is in line with some findings in Section 5.

We calculate the daily returns of the banks’ stocks as follows:

rt = ln
( Pt

Pt−1

)
× 100 (7)

Figure 7 shows the daily stock price returns for Swedbank and SEB banks. We see that

returns fluctuate near the mean value (close to zero) and the spread of these fluctuations

change over time.

A statistical overview of the log returns for both stocks is provided in Table 4. From

the skewness and excess kurtosis, we see that the distribution is not close to normal

(skewness is -0.67 and -0.68 and excess kurtosis is 3.42 and 6.49 for Swedbank and SEB
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Figure 7: Daily stock returns of (A) Swedbank, and (B) SEB banks

Notes: This figure shows the daily stock returns of (A) Swedbank, and (B) SEB banks for the period
04.01.2016 - 19.02.2019, as a %.

Source: Authors’ calculations and ”Yahoo! Finance”.

Bank, respectively). Returns data is negatively skewed: the left tail is longer than the

right. This may suggest some extreme negative returns. The high excess kurtosis suggests

that the distribution of the returns is fat-tailed, which is noticeable in particular with SEB

Bank returns.

Table 4: Descriptive statistics of daily stock returns

Stocks N Mean St.dev. Med. Min. Max. Skew. E.kur.

Swedbank 792 0.04 1.24 0.01 -9.48 5.14 -0.67 3.42

SEB 792 0.04 1.37 0.00 -11.63 8.66 -0.68 6.49

Notes: This table shows descriptive statistics of daily adjusted closing stock returns for Swedbank and
SEB banks for the period 04.01.2016 - 19.02.2019. N - number of news sentiments available in data set,

Med. - median, St.dev. - standard deviation of sentiments, Min./Max. - minimum and maximum
sentiment score, Skew. - skewness of the data, E.kur. - excess kurtosis of the data. All values are in

percentages.
Source: Authors’ calculations and ”Yahoo! Finance”.

Our analysis of the data starts with preliminary tests. We first check if the return

series we obtained are stationary using the Augmented Dickey-Fuller (ADF) test. In this

test the null hypothesis is that the return series is not stationary. From Table 5, we can

see that this null hypothesis can be rejected for the returns of Swedbank and SEB Bank.

Therefore we conclude that these return series are stationary.

We also look at the autocorrelation and partial autocorrelation structures of the re-

turns, which allow us to determine the order of the MA(q) and AR(p) terms, respectively.

Figure 8a shows that there are significant autocorrelations at lags 4 and 10 for Swedbank.
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Table 5: Augmented Dickey-Fuller test for stationarity

Swedbank SEB

Dickey-Fuller -10.664 -9.8816

Lag order 9 9

P-value 0.01 0.01

Alternative hypothesis: stationary

Notes: Augmented Dickey-Fuller test for stationarity of daily stock returns of Swedbank and SEB Bank
for the period 04.01.2016 - 19.02.2019. Dickey-Fuller - Augmented Dickey-Fuller test statistic, lag -

number of lagged terms, the alternative hypothesis is that time series is stationary. From the resulting
p-value, we conclude that null-hypothesis about non-stationary time series can be rejected at a

significance level of 0.05.
Source: Authors’ calculations.

The partial correlation plot in Figure 8b indicates an increase at lags 4, 10 and 13. For

the SEB Bank data, we see significant autocorrelations at lags 1, 4, 10 and 16 (Figure 9a).

Figure 9b shows an increase at lags 1, 4, 10 and 16. These lags were taken into account

when choosing the ARMA orders for Swedbank and SEB Bank returns.

Figure 8: ACF and PACF plots of Swedbank’s daily stock returns data

(a) ACF plot (b) PACF plot

Notes: This figure shows 8a autocorrelation function (ACF) and 8b partial autocorrelation function
(PACF) plots for Swedbank’s daily stock returns data. From the ACF, we can conclude that the returns

are not highly correlated with its lagged values because most of the spikes are not statistically
significant. The PACF plot shows that there is no correlation between residuals and the next lag values.

Source: Authors’ calculations.

5 Results

The news vectors contain many zeros and relatively less non-zero values. Moreover, they

are not autocorrelated12, and therefore cannot explain or capture the autocorrelation

12Ljung-Box test was applied to the news vectors and there were no significant autocorrelations for any
of the news vectors.
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Figure 9: ACF and PACF plots of SEB Bank’s daily stock returns data

(a) ACF plot (b) PACF plot

Notes: This figure shows 9a autocorrelation function (ACF) and 9b partial autocorrelation function
(PACF) plots for SEB Bank’s daily stock returns data. From the ACF, we can conclude that the

returns are not highly correlated with its lagged values because most of the spikes are not statistically
significant. The PACF plot shows that there is no considerable correlation between residuals and the

next lag values.

Source: Authors’ calculations.

structure in the return series. For this reason, when choosing the orders of the AR model,

we don’t take the news sentiment variables into account. Based on the AIC criteria from

the models which yielded serially uncorrelated residuals13, we found that the AR(4) model

is the most adequate for both Swedbank and SEB Bank returns. The models with news

sentiment variables are built on the AR(4) model. In order to avoid the trap of local

optima during the estimations, we considered many starting values for the optimization

procedure. In what follows, the estimation results that we want to focus on are presented

in tables where the coefficients and their statistical significance are presented for each

model.

5.1 Estimation Results

To save from space, we mention here that the AR and GARCH parameter estimates of

all the models below satisfy the corresponding stationarity requirements. We discuss the

restrictions on the coefficients of the news sentiment variables in detail in Section 3.3.

Model 1.0 AR(4) model (base-line model)

For both Swedbank and SEB Bank stock returns, the appropriate ARMA model was

an AR(4). The estimated model is given in Table 10 in Appendix B. From the results, we

can conclude that AR coefficients for both banks’ stocks are significant at a significance

level of 0.01 and stock returns are correlated with returns from the last 4 periods.

For the following models which extend the base model by including news sentiment

13The residuals of each model was tested for autocorrelation using the Ljung-Box test.
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variables, we perform likelihood ratio tests comparing them with the nested smaller mod-

els. Although the likelihood ratio test results suggest that adding the news sentiments

variables did not improve the fit significantly, some of the individual coefficients of interest

are found to be significant14.

Model 1.1 AR(4) model with news component

The model AR(4) that contains news sentiment variables follows the Equation 2. The

estimation results are given in Table 11 in Appendix B. For Swedbank and SEB Bank

stock returns, we can see that the autoregressive parameter estimates changed slightly

compared to the base model and the intercept is smaller.

The coefficient estimates suggest that the location (Baltic States or Sweden) of news

matter. The Local and Others are news sources about the real estate market in Sweden

and therefore it is not surprising to see that they lead to an increase in the Swedbank

returns on the same day, while the effect of the former continues two days later. Reuters

and Baltics news effect the Swedbank returns positively on the next day and the following

day. For SEB Bank stock returns, Swedish news from The Local and Others make the

returns increase on the same day and the positive effect of The Local continues two more

days. On the other hand, Reuters news affects the SEB Bank returns positively in the

next two days and Baltic news affect the SEB Bank returns positively in two days. The

differences compared to the estimations with Swedbank returns are that (1) SEB Bank

returns react slower to Baltic news: one day later, (2) the SEB Bank returns seem to de-

pend comparatively more on the Others news sources, (3) in total, the SEB Bank returns

are less exposed to the news from Reuters and The Local.

Model 1.2 AR(4) model with asymmetric effect of news, neutral news discarded

The AR(4) model with asymmetric effect of news follows from Equation 3 and the

estimation results are given in Table 6.

Table 6 shows that when the news are distinguished for negative and positive senti-

ments, interesting results emerge. For both banks’ stock returns, all the news sentiment

coefficients are positive as the restrictions required, while some are not significant even at

0.1 significance level. We focus our attention on the significant coefficients.

For Swedbank stock returns, it is observed that less bad news15 from the Baltics mean

higher returns on the same day but the main influence comes with a two-day delay. This

is a result that Model 1.1 could not capture. Less bad news from Reuters affects returns

positively with a delay of one and two days. The biggest effect of less bad news comes

from The Local and Others on the same day and the impact continues two days more in

14In a model where the likelihood ratio tests or equivalently the F-test suggest that several coefficients
in the larger model are jointly insignificant, if a few of those coefficients are individually significant, then
they shouldn’t be ignored by the researcher. See Wooldridge (2015) pp. 149-150 for a detailed discussion.

15Less bad news means an increase in the negative news sentiment variable. An alternative way to read
the results would be more bad news which would mean a decrease in the same variable.
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Table 6: Estimation results for the AR(4) model with asymmetric effect of news

Coefficients Swedbank SEB Bank

µ 0.0344 (0.0177) [*] 0.0385 (0.0101) [***]
β1 0.0343 (0.0048) [***] -0.0765 (0.0507)
β2 -0.0699 (0.0175) [***] -0.0659 (0.0194) [***]
β3 0.0530 (0.0130) [***] 0.0333 (0.0084) [***]
β4 -0.1221 (0.0595) [**] -0.0799 (0.0135) [***]

Reuters−t 0.0000 (0.0000) 0.1720 (0.0678) [**]
TheLocal−t 0.8393 (0.2854) [***] 0.4885 (0.1912) [**]
Others−t 0.5647 (0.1246) [***] 1.0128 (0.6627)
Baltics−t 0.1399 (0.0609) [**] 0.0524 (0.0137) [***]

Reuters−t−1 0.2619 (0.1026) [**] 0.0080 (0.0019) [***]
TheLocal−t−1 0.4045 (0.1967) [**] 0.6765 (0.4587)
Others−t−1 0.0000 (0.0000) 0.0000 (0.0000)
Baltics−t−1 0.0000 (0.0000) 0.0000 (0.0000)

Reuters−t−2 0.3357 (0.1218) [***] 0.1868 (0.0414) [***]
TheLocal−t−2 0.0163 (0.0054) [***] 0.0414 (0.0200) [**]
Others−t−2 0.0000 (0.0000) 0.1533 (0.0582) [***]
Baltics−t−2 0.7157 (0.3739) [*] 0.8116 (0.5523)

Reuters+t 0.0000 (0.0000) 0.0000 (0.0000)
TheLocal+t 0.5539 (0.4448) 0.6210 (0.3680) [*]
Others+t 0.0107 (0.0027) [***] 0.3555 (0.1959) [*]
Baltics+t 0.0000 (0.0000) 0.0000 (0.0000)

Reuters+t−1 0.4622 (0.3550) 0.3723 (0.4604)
TheLocal+t−1 0.0000 (0.0000) 0.0000 (0.0000)
Others+t−1 0.0000 (0.0000) 0.0699 (0.0303) [**]
Baltics+t−1 0.1535 (0.1109) 0.1087 (0.0708)

Reuters+t−2 0.2888 (0.1239) [**] 0.1101 (0.0699)
TheLocal+t−2 0.2689 (0.2292) 0.0000 (0.0000)
Others+t−2 0.0000 (0.0000) 0.0000 (0.0000)
Baltics+t−2 0.0000 (0.0000) 0.1326 (0.1452)

LL -1267.25 -1343.27
AIC 2592.51 2744.53
BIC 2728.07 2880.09
SSE 1144.12 1386.91
Pval. vs. AR(4) 0.6661 0.5681

Notes: The model is explained under Model 1.2. Standard errors are given in parenthesis. [*], [**], [***]
show significance at 0.1, 0.05 and 0.01 significance levels, respectively.

Source: Authors’ calculations.

the case of The Local. In the case of The Local, Others and Baltics news, the total effect

of negative news is higher than that of the positive news. Finally, the positive impact of

positive news from Reuters is relatively high, compared to the other news sources.

For SEB Bank stock returns, we can see that less bad news from Reuters, The Local

and Baltics sources increase the returns significantly on the same day, while for the first

two sources, the effect continues two days later. The effect of the bad news from Baltics is

relatively small and comes on the first day. When looking at the positive news sentiments,
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we see the positive impact of the news from The Local and Others news sources, where

the effect from the latter continues in the next day.

As with the Swedbank returns, SEB Bank returns are largely, significantly and pos-

itively affected by the news from The Local and somewhat less by the news from the

Baltics on the same day. Interestingly the SEB Bank returns are influenced positively by

less bad news from Reuters on the same day, which is not the case of Swedbank returns.

The news from the Others news sources affect the SEB Bank returns more compared to

the Swedbank returns, but this coefficient is insignificant. Overall, there are many sig-

nificant coefficients for the negative news sentiment variables, while not as much for the

positive ones.

Model 1.3 AR(4) model with merged news data (positive and negative news distin-

guished)

The AR(4) model with merged news comes from Equation 4 and the estimation results

are given in Table 7.

Table 7: Estimation results for the AR(4) model with merged news data (positive and
negative news distinguished)

Coefficients Swedbank SEB Bank

µ 0.0500 (0.0053) [***] 0.0730 (0.0105) [***]
β1 0.0386 (0.0049) [***] -0.0804 (0.0087) [***]
β2 -0.0657 (0.0072) [***] -0.0631 (0.0107) [***]
β3 0.0461 (0.0046) [***] 0.0270 (0.0081) [***]
β4 -0.1273 (0.0295) [***] -0.0809 (0.0161) [***]

News−t 0.0000 (0.0000) 0.0000 (0.0000)
News−t−1 0.0000 (0.0000) 0.0000 (0.0000)
News−t−2 0.1102 (0.0260) [***] 0.3125 (0.0699) [***]

News+t 0.0000 (0.0000) 0.0000 (0.0000)
News+t−1 0.0000 (0.0000) 0.0000 (0.0000)
News+t−2 0.0000 (0.0000) 0.0000 (0.0000)

N−
t -0.3865 (0.0914) [***] -0.5116 (0.2101) [**]

N−
t−1 -0.0372 (0.0087) [***] -0.0000 (0.0000)

N−
t−2 -0.0000 (0.0000) -0.0000 (0.0000)

N+
t 0.0000 (0.0000) 0.0083 (0.0029) [***]

N+
t−1 0.0865 (0.0111) [***] 0.1278 (0.0386) [***]

N+
t−2 0.0959 (0.0210) [***] 0.0574 (0.0295) [*]

LL -1272.95 -1347.52
AIC 2579.89 2729.03
BIC 2659.36 2808.50
SSE 1160.73 1401.90
Pval. vs. AR(4) 0.6907 0.3209

Notes: The model is explained under Model 1.3. Standard errors are given in parenthesis. [*], [**], [***]
show significance at 0.1, 0.05 and 0.01 significance levels, respectively.

Source: Authors’ calculations.
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For the Swedbank stock returns, the results interestingly suggest that the content of

the news matters only in the case of negative news and with a delay of two days. It

seems that the return process is more concerned with the number of news rather than the

content of news. The impact of one more piece of negative news affects the returns largely

and negatively on the same day and to some extent on the next day. This is true even if

the news of little importance. It seems that when there is large number of negative news

from different sources, the returns are pulled down to a large extent on the same day. In

contrast, if there is only one source providing bad news whose size might be large (which

is perhaps speculative or fake news), the effect on the returns is relatively smaller and

with a delay. Typically, speculative or fake news do not appear in many sources on the

same day. Therefore, in this model the return process takes into account the probability

that the news might be fake if it appears in one source 16 Finally, the effect of the number

of positive news affect the returns with delays of one and two days, but not on the same

day.

For the stock returns of SEB Bank, the findings are similar to the case of Swedbank

returns. The estimation results suggest that the size of the negative news affect the returns

only two days later, however, the number of negative news in the media affect the returns

negatively on the same day. The effect of the number of positive news is distributed

over the lags and not as large as that for negative news. Finally, we can say that SEB

Bank returns are more exposed to the negative news and to the number of negative news

compared to Swedbank returns.

In all these estimations for the conditional mean, the effect of news sentiments were

restricted to be positive, for which the explanation was provided in Section 3.3. In fact,

this restriction and the results which follow are in line with the findings of Arik (2011),

where the author finds positive relationship between the news sentiments and S&P 500

excess returns.

We found out that the lowest AIC and BIC values among the conditional mean models

we estimated belonged to the AR(4) model without news sentiment variables. Hence, we

use the residuals taken from this model in the GARCH model estimations. As in the

conditional mean models, we keep our attention on the extended models rather than the

base GARCH model.

When we look at the AIC and BIC values of the Tables 8 and 9, we noticed that

for Swedbank volatilities GJR-GARCH model with asymmetric news sentiments perform

better, while for SEB volatilities NAGARCH model with asymmetric news sentiments is

a better fit. For Swedbank volatilities GJR and NAGARCH results are similar for the

coefficients of the news sentiment variables. However, for SEB volatilities, NAGARCH

model with news sentiments variables have several more significant coefficients.

For Swedbank volatilities, the estimation results for Model 2.1 in Table 8 indicate that

16Another explanation could be that when some certain news appears in many different news sources,
then it reaches to many investors who adjust their portfolios accordingly.
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Table 8: Estimation results for the GJR-GARCH(1, 1) model with asymmetric news

Coefficients Swedbank SEB Bank

γ 0.1221 (0.0391) [***] 0.0691 (0.0111) [***]
α1 0.0200 (0.0026) [***] 0.0440 (0.0152) [***]
α2 0.8205 (0.0303) [***] 0.8921 (0.0189) [***]
θ 0.1595 (0.0118) [***] 0.0639 (0.0136) [***]

Reuters−t -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal−t -0.0000 (0.0000) -0.4677 (0.2241) [**]
Others−t -0.0000 (0.0000) -0.0000 (0.0000)
Baltics−t -0.0000 (0.0000) -0.0000 (0.0000)

Reuters−t−1 -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal−t−1 -0.0000 (0.0000) -0.0000 (0.0000)
Others−t−1 -0.0000 (0.0000) -0.0000 (0.0000)
Baltics−t−1 -0.0000 (0.0000) -0.0000 (0.0000)

Reuters−t−2 -0.2076 (0.0228) [***] -0.0000 (0.0000)
TheLocal−t−2 -0.0000 (0.0000) -0.0000 (0.0000)
Others−t−2 -0.0000 (0.0000) -0.0000 (0.0000)
Baltics−t−2 -0.0308 (0.0048) [***] -0.0000 (0.0000)

Reuters+t -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal+t -0.0000 (0.0000) -0.1932 (0.0318) [***]
Others+t -0.2063 (0.0494) [***] -0.0000 (0.0000)
Baltics+t -0.0000 (0.0000) -0.0000 (0.0000)

Reuters+t−1 -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal+t−1 -0.0000 (0.0000) -0.0000 (0.0000)
Others+t−1 -0.1111 (0.0158) [***] -0.4089 (0.0724) [***]
Baltics+t−1 -0.0000 (0.0000) -0.0000 (0.0000)

Reuters+t−2 -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal+t−2 -0.0000 (0.0000) -0.0000 (0.0000)
Others+t−2 -0.0000 (0.0000) -0.0000 (0.0000)
Baltics+t−2 -0.0000 (0.0000) -0.0000 (0.0000)

LL -1214.47 -1275.20
AIC 2484.94 2606.39
BIC 2615.82 2737.28
Pval. vs. GARCH 0.3223 0.2987
Pval. vs. GJR-GARCH 0.9679 0.7615
Pval. vs. GARCH with asym. news 0.0027 0.0146

Notes: The model is explained under Model 2.1. Standard errors are given in parenthesis. [*], [**], [***]
show significance at 0.1, 0.05 and 0.01 significance levels, respectively.

Source: Authors’ calculations.

there is a significant asymmetric effect of the return shocks on the volatility, indicated

by the value of θ. On the other hand there are only a few significant coefficients for

the news sentiment variables. According to the results presented in Table 8, less bad

news sentiments from Reuters and Baltics would decrease volatility two days later. On

the other hand an increase in positive news sentiments in the Others news source would

decrease volatility on the same day and next day. We should say that this result is not

in line with the result of GARCH model with news sentiment variables (no asymmetry),
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Table 9: Estimation results for the NA-GARCH(1, 1) model with asymmetric news

Coefficients Swedbank SEB Bank

γ 0.0998 (0.0211) [***] 0.0215 (0.0041) [***]
α1 0.0945 (0.0141) [***] 0.0145 (0.0021) [***]
α2 0.8191 (0.0221) [***] 0.8783 (0.0193) [***]
δ -0.4934 (0.1056) [***] -2.6273 (0.3116) [***]

Reuters−t -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal−t -0.0000 (0.0000) -0.4663 (0.1288) [***]
Others−t -0.0000 (0.0000) -0.0126 (0.0011) [***]
Baltics−t -0.0000 (0.0000) -0.0000 (0.0000)

Reuters−t−1 -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal−t−1 -0.0000 (0.0000) -0.0000 (0.0000)
Others−t−1 -0.0000 (0.0000) -0.0000 (0.0000)
Baltics−t−1 -0.0000 (0.0000) -0.0000 (0.0000)

Reuters−t−2 -0.1988 (0.0296) [***] -0.0829 (0.0168) [***]
TheLocal−t−2 -0.0000 (0.0000) -0.0000 (0.0000)
Others−t−2 -0.0000 (0.0000) -0.1430 (0.0370) [***]
Baltics−t−2 -0.0000 (0.0000) -0.0000 (0.0000)

Reuters+t -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal+t -0.0000 (0.0000) -0.1460 (0.0177) [***]
Others+t -0.2086 (0.0189) [***] -0.0000 (0.0000)
Baltics+t -0.0000 (0.0000) -0.0000 (0.0000)

Reuters+t−1 -0.0000 (0.0000) -0.0000 (0.0000)
TheLocal+t−1 -0.0000 (0.0000) -0.0000 (0.0000)
Others+t−1 -0.0750 (0.0079) [***] -0.1902 (0.0352) [***]
Baltics+t−1 -0.0000 (0.0000) -0.0000 (0.0000)

Reuters+t−2 -0.0000 (0.0000) -0.1539 (0.0262) [***]
TheLocal+t−2 -0.0000 (0.0000) -0.0000 (0.0000)
Others+t−2 -0.0000 (0.0000) -0.0585 (0.0068) [***]
Baltics+t−2 -0.0000 (0.0000) -0.0000 (0.0000)

LL -1215.91 -1270.69
AIC 2487.82 2597.38
BIC 2618.71 2728.27
Pval. vs. GARCH 0.5374 0.0297
Pval. vs. NAGARCH 0.9738 0.5455
Pval. vs. GARCH with asym. news 0.0135 0.0001

Notes: The model is explained under Model 2.2. Standard errors are given in parenthesis. [*], [**], [***]
show significance at 0.1, 0.05 and 0.01 significance levels, respectively.

Source: Authors’ calculations.

which revealed that an increase in the negative news sentiments in The Local news source

would decrease the volatility on the same day. Since this model is clearly outperformed

by the GJR-GARCH extension, we do not present its results in this paper. However they

are available upon request from the authors. The probability value for the likelihood ratio

test of the GJR-GARCH model with news sentiments variables versus the GARCH model

with news sentiments variables is less than 1% significance level. Looking at the other

p-values, we see that the news sentiment variables are jointly insignificant when compared
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to a GJR-GARCH model.

For SEB volatilities we concentrate our attention to the results of Model 2.2 in Ta-

ble 9. A very interesting result is that the nonlinear specification (NAGARCH) for the

asymmetric effect of the return shocks works better for the SEB volatilities than the linear

counterpart GJR-GARCH. In fact the asymmetry coefficient δ is quite large. The results

indicate that less bad news from The Local and Others news sources would decrease the

volatility significantly on the same day and the effect continues two days later for the

Others news source. We also notice that less bad news from Reuters decreases volatility

in two days. When looking at the positive news sentiments, we can see that the more

good news from The Local would decrease volatility on the same day. Similar effect is seen

for the Others news source on the next day and the third day. The effect from Reuters

arrives in two days as it was for the negative news sentiments. We can notice that the

NAGARCH coefficient and the news sentiments coefficients are jointly significant at 5%

compared to a GARCH specification.

The similarity between the results for Swedbank and SEB Bank is that both volatility

series maintain asymmetric effects from return shocks and the effect of Swedish news from

Reuters source on the volatility of the returns arrive with two days lag.

The result that negative and positive news sentiments affect the volatility differently

is in line with the works of Engle and Ng (1993) and Tetlock (2007). However, based

on the likelihood ratio tests we couldn’t find clear evidence that news sentiments jointly

improve the fit over and above the asymmetric GARCH models: GJR and NAGARCH.

Only a few coefficients were individually significant. On the other hand, the GJR and NA-

GARCH models clearly present a better performance compared to a GARCH(1, 1) model.

5.2 Further Discussion

We considered some other models in order to see whether different ways of introducing

news sentiments would make a difference. In particular, we estimated smaller models

which are nested in the ones we discuss in this paper. We were able to calculate the

likelihood ratio tests from these estimations. We did not include the estimation results of

these other models in this paper, however they are available upon request.

For the conditional returns, we extended the AR(4) model with news sentiments in

Equation 2 by including dummy variables for extreme news. These dummy variables took

value 1 when the news sentiment were 3 standard deviations away from their means. They

were also distinguished for positive and negative news. We discarded this model since it

presented high level of multicollinearity between the news sentiments variables and the

dummy variables. In addition, most of the coefficient estimates for the dummy variables

were equal to zero. We also considered a set up where we extended the AR(4) model

with news sentiments in Equation 2 by adding the same news sentiment variables but

multiplying them with an indicator that takes value 1 for negative news sentiments. This
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yields a similar construction as in the GJR-GARCH model. We didn’t include this model

in our paper since the interpretation of the results we obtained for it were similar to that

of Model 1.2 that considered negative and positive news sentiments separately.

For modelling the conditional volatility, we extended the GJR-GARCH and NA-

GARCH models to include merged news as in Equation 4. Except for the number of

negative news sentiments, all coefficients were restricted to be negative. Interestingly,

almost all the coefficients for these news sentiments were estimated to be zeros for both

banks’ return volatilities. That’s why we didn’t include this model in the paper. The

only exception was that in the GJR-GARCH results for the Swedbank volatilities, the

coefficient of the number of negative news with two days lag was estimated to be 0.0751

and it was significant.

Another possible question could be about the distribution assumption on the return

shocks. Financial returns usually have leptokurtic distributions. This is confirmed in the

descriptive statistics of our returns data as well. In this paper we assumed that these

shocks are normally distributed to be able to use the two step estimation procedure.

We first estimated the conditional mean parameters, and after that we estimated the

conditional volatility parameters. This idea was mentioned in Bauwens et al. (2006) and

with that motivation numerically analyzed by Carnero and Eratalay (2014). De Almeida

et al. (2018) also mention this estimation method that the returns or the residuals of a

VARMA model can be used for the two step estimation procedure (volatility+correlation)

of a DCC-GARCH model, which corresponds to the same estimation method. We followed

this procedure to avoid possible convergence problems in numerical optimization during

the implementation of the model, in particular when the models have too many parameters

to estimate. If we had assumed a Student-t distribution for the return shocks, then we

would have had to estimate the conditional mean and variance parameters altogether,

which would have brought about this problem.

6 Conclusions

In this paper, we analysed the effect of the sentiment of news related to the real estate

market in Sweden, Estonia, Latvia, and Lithuania, on the stock returns and volatilities of

Swedbank and SEB Bank. In this analysis, we considered the period between 04.01.2016

and 19.02.2019. First, we applied the Python open-source tools and libraries for web

scraping to obtain text from news web pages, then used a rule-based sentiment analysis

tool - VADER model - to compile a news sentiment time series. Subsequently, we used

this data to estimate four ARMA models in which we considered several aspects such as

extreme news, asymmetric effect of the news, and content versus the number of news. We

also investigated the effect of the sentiment of news on the volatilities to see if positive

and negative news can generate different effects on volatility.

We found that, for both banks the local Swedish news has more immediate and stronger
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effect than the Baltic and Reuters news. Moreover, the positive and negative news sen-

timents affect the returns and volatilities of Swedbank and SEB Bank stocks differently.

The size of the negative news only affects the returns two days later; however, the number

of negative news affects the returns on the same day. One possible interpretation of this

is that the bank stock returns may not react as strongly to one big negative news but

may react much more sharply to many small negative news. We also took into consid-

eration the time lags, and we found that there was a difference between how soon the

two banks react to the news. SEB Bank stock returns respond slower to Baltic news

than Swedbank stock returns. On the other hand, SEB Bank stock returns are affected

by negative Reuters news on the same day, while Swedbank stock returns are affected

with a delay. Finally, we found out significant asymmetric effect of the return shocks on

the volatilities of the two banks’ returns. When this asymmetric effect was taken into

account, the volatility of Swedbank stock returns was influenced by negative news from

Reuters and Baltics with two days delay, and by positive news from local news sources

on the same day and the next day. Similarly, the volatility of SEB returns depend on

the news from Reuters with a delay of two lags. The volatility of SEB stock returns was

influenced more by both negative and positive news from the local news sources on the

same day and with two days lag. It is surprising to see that the volatility of SEB stock

returns do not depend on Baltics news sentiments, and the volatility of Swedbank returns

depend on it to a small extent.

This paper can be further extended in several ways. It would be interesting to see how

the Swedbank and SEB Bank stock returns and volatilities react to fake or speculative

news. It could be that the investors are sensitive to such news, and therefore some

volatility behaviour can be explained by this. Another extension could be to analyse the

posts shared in social media such as Facebook, VK or Twitter to see the mood of the

investors. Although these posts could be more emotional compared to actual news, it is

a fact that less well-informed investors are influenced by these posts. It is also possible

to incorporate news in local languages, i.e. Swedish, Latvian, Lithuanian, Estonian, to

the sentiment analysis. This would be a challenging task because one needs to construct

related libraries in Python for this analysis. However, the news sentiment data extracted

from these local news would be highly valuable for this analysis.
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A List of news sources used for the sentiment analysis

1. Baltic news

• Eesti Rahvusringhääling: https://news.err.ee/

• The Baltic Times: https://www.baltictimes.com/

• Baltic News Network: https://bnn-news.com/

• Reuters: https://www.reuters.com/

• EN.DELFI: https://en.delfi.lt/

• The Baltic Course: http://www.baltic-course.com/

• LETA: http://www.leta.lv/

• The New York Times: https://www.nytimes.com

• REINVEST24: https://blog.reinvest24.com/

• NEWSEC: http://newsecbaltics.com/

2. Swedish news

• Reuters: https://www.reuters.com/

• The Local SE: https://www.thelocal.se/

• Quartz: https://qz.com

• Business Insider: https://www.businessinsider.com

• Bloomberg: https://www.bloomberg.com/

• Telegraph: https://www.telegraph.co.uk/

• Financial Times: https://www.ft.com

• The Brampton Guardian: https://www.bramptonguardian.com/

• Sputnik: https://sputniknews.com/

• CNBC: https://www.cnbc.com/

• Politico: https://www.politico.eu/

• IMF News: https://www.imf.org/en/News/

• Forbes: https://www.forbes.com/

• The Construction Index: https://www.theconstructionindex.co.uk/

• The New York Times: https://www.nytimes.com

• Euromoney: https://www.euromoney.com/

• BuyAssociation: https://www.buyassociation.co.uk/

• The Wall Street Journal: https://www.wsj.com
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• Coindesk: https://www.coindesk.com/

• The Economist: https://www.economist.com

• Expert Investor: https://expertinvestoreurope.com/

• Cision PR Newswire: https://www.prnewswire.com/

• Property Funds World: https://www.propertyfundsworld.com

• GlobeNewswire: https://www.globenewswire.com/

• Global Property Guide: https://www.globalpropertyguide.com/

• Data Centre Dynamics: https://www.datacenterdynamics.com/

• ING THINK: https://think.ing.com

B Estimation results presented in detail by equations

In what follows we present the estimation results of other models. In each table LL is

the loglikelihood value, AIC and BIC are Akaike and Bayesian Information Criterion,

respectively, and SSE is the sum of squared residuals of the estimation results.

Model 1.0. AR(4) model (base-line model)

Estimation results of AR(4) model, which is the base-line model, for Swedbank and

SEB Bank stock returns.

Table 10: Estimation results for the AR(4) model (base-line model)

Coefficients Swedbank SEB Bank

µ 0.0489 (0.0040) [***] 0.0547 (0.0104) [***]
β1 0.0422 (0.0066) [***] -0.0811 (0.0167) [***]
β2 -0.0692 (0.0097) [***] -0.0637 (0.0083) [***]
β3 0.0475 (0.0062) [***] 0.0295 (0.0025) [***]
β4 -0.1299 (0.0321) [***] -0.0793 (0.0086) [***]

LL -1277.52 -1354.36
AIC 2565.04 2718.72
BIC 2588.41 2742.09
SSE 1174.24 1426.41

Notes: The model is explained under Model 1.1. Standard errors are given in parenthesis. [*], [**], [***]
show significance at 0.1, 0.05 and 0.01 significance levels, respectively.

Source: Authors’ calculations.
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Model 1.1. AR(4) model model with news component

Estimation results of AR(4) model with news component for Swedbank and SEB Bank

stock returns.

Table 11: Estimation results for the AR(4) model with news component

Coefficients Swedbank SEB Bank

µ 0.0087 (0.0017) [***] 0.0115 (0.0046) [**]
β1 0.0350 (0.0074) [***] -0.0811 (0.0131) [***]
β2 -0.0677 (0.0109) [***] -0.0623 (0.0237) [***]
β3 0.0509 (0.0119) [***] 0.0297 (0.0030) [***]
β4 -0.1250 (0.0345) [***] -0.0798 (0.0258) [***]

Reuterst 0.0000 (0.0000) 0.0000 (0.0000)
TheLocalt 0.6350 (0.2026) [***] 0.5736 (0.1613) [***]
Otherst 0.2066 (0.0790) [***] 0.5816 (0.2274) [**]
Balticst 0.0000 (0.0000) 0.0000 (0.0000)

Reuterst−1 0.3883 (0.1281) [***] 0.2663 (0.1944)
TheLocalt−1 0.0000 (0.0000) 0.0716 (0.0317) [**]
Otherst−1 0.0000 (0.0000) 0.0000 (0.0000)
Balticst−1 0.0720 (0.0189) [***] 0.0000 (0.0000)

Reuterst−2 0.3064 (0.1314) [**] 0.1345 (0.0362) [***]
TheLocalt−2 0.2471 (0.0882) [***] 0.0543 (0.0153) [***]
Otherst−2 0.0000 (0.0000) 0.0015 (0.0009)
Balticst−2 0.1038 (0.0328) [***] 0.2323 (0.1281) [*]

LL -1270.30 -1346.48
AIC 2574.59 2726.97
BIC 2654.06 2806.43
SSE 1152.97 1398.25
Pval. vs. AR(4) 0.2732 0.2028

Notes: The model is explained under Model 1.1. Standard errors are given in parenthesis. [*], [**], [***]
show significance at 0.1, 0.05 and 0.01 significance levels, respectively.

Source: Authors’ calculations.
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