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ABSTRACT: Due to the fact that oil prices had a falling outlook after the global crisis,

modeling oil market prices has been a topic of interest among researchers. The goals

of this study are to investigate the recession or growth periods of oil futures markets

using Markov switching autoregressive models, and to analyze the models’ durations

and probabilities to provide information to the investors who invest in these markets.

The study findings indicate that oil prices have a nonlinear pattern with three regimes.

The model that best describes the oil futures markets is MSIH(3)-AR(0) with three

regimes.
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Introduction

The study of oil prices has been growing in importance in recent years because of the falling

outlook. The extreme movements of both oil and oil futures prices as well as oil prices

beginning in 2008 sparked the interest. 2009 was keenly watched after the oil prices exceeded

$145 and then sharply decreased below $50 in 2008. The oil futures prices never reached $100

USD after July 2014, and the following year prices fell. According to the Organization of the
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Petroleum Exporting Countries’ (OPEC) Annual Report 2015, crude prices fell by around

50%, The OPEC Reference Basket averaged just under $50 per barrel in 2015, and as a result

many investments were deferred and some were cancelled, with exploration and production

spending falling by around 20% compared to 2014.

This research aims to analyze oil futures prices following the global crisis by using Markov

switching autoregressive models (MS-AR) and to bring to light the oil futures market. The

models examine the futures prices from a nonlinear perspective. Additionally, the information

about the duration and probabilities of the regimes in the nonlinear switching models is

important for investors in these markets. Taking a look at the literature, it can be seen that

many studies related to the price dynamics of futures markets exist. What makes this study

different from those others is that it examines the prices using Markov regime switching

models which also provide detailed information about market performance for international

investors.

1 Literature

The theoretical basis for the observed price behavior of futures was examined by Working

(1949), with a particular focus on inter-temporal price relations, “defined as relations at a

given time between prices applicable to different times” (Working, 1949, p.1254). Working

found that the inter-temporal price relation was explained by the commodity’s carrying cost

because participants in the futures market try to make profit, the arbitrage possibilities elim-

inate any bias in the futures prices. In another early study, Rockwell et al. (1967), examined

25 commodity markets for the period 1947–1965 and found that futures prices rose by about

4% annually. Breeden and Litzenberger (1978), and Breeden (1979, 1980) modeled expected

returns in commodity futures by using intertemporal capital arbitrage pricing model (CAPM).

They found that changes in the expected returns were associated with real consumption and

the consumption betas. In addition, Dusak (1973) and Breeden (1980) also related futures

prices to the expected risk premium.

One recent study examines price discovery in the prominent market price benchmarks

crude oil West Texas Intermediate (WTI) and crude oil Brent (Elder et al., 2014). The

authors find no evidence that the dominant role of crude oil WTI in price discovery was

diminished by the price spread between WTI crude oil and Brent crude oil that emerged

in 2008. In another study, the volatility of crude oil price futures returns were analyzed by

Baum and Zerilli (2016) for the period from October 2001 to December 2012. The results

of the model applied to the intraday data indicate that stochastic volatility models are ef-

fective in fitting the volatility of oil price futures returns. Bernard et al. (2015) modeled oil

futures prices using weekly and monthly data and maturities of one to four months. Their
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results show that forecast performances improve with longer date-to-maturity futures, sug-

gesting that the role of the convenience yield is greater when physical oil inventories are

held for longer durations. In addition, forecast accuracy is highest at the one year hori-

zon, though the time-varying convenience models (the mean-reverting class of models from

Schwartz and Smith (2000) and Schwartz (1997)) have a much higher accuracy than the

autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive condi-

tional heteroskedasticity (GARCH) models over the three and five-year horizons.

Even though there is not a wide literature on the nonlinear approach, there have been

some studies examining spot oil prices by Vo (2009), Kordnoori et al. (2013), and Zlatcu et al.

(2015). Vo (2009) used the Markov switching stochastic volatility (MSSV) model to explain

the behavior of crude oil prices in order to forecast their volatility. Zlatcu et al. (2015) studied

the fuel markets of Romanian, Germany, France, Poland and the Czech Republic, examining

the price volatility and the response of retail fuel prices to changes in international crude

oil prices by estimating univariate and multivariate GARCH models, as well as applying a

momentum threshold autoregressive (MTAR) co-integration model. Kordnoori et al. (2013)

modelled the fluctuations of Brent oil prices by integrating the limit probability distribution

of a Markov chain and Gumbel Max distribution.

One of the previous studies examining the nonlinear behavior of oil futures considers the

daily returns of the second nearest crude oil futures based on WTI: Fong and See (2002)

examine the effect of volatility in daily returns on crude oil futures using GARCH, RS,

RSARCH-t and RSGARCH-t models. They find that RS models are useful both to financial

historians interested in studying the factors behind the evolution of volatility and to oil futures

traders interested in using the model to extract short-term forecasts of conditional volatility.

Similarly, Chevallier (2013) used the Markov regime switching vector autoregression (MS-

VAR) model to explore the influence of different economic variables on the 2008 oil price

swing. Zhang and Zhang (2015) singled out a Markov switching model (MS(3)-AR(2)) with

three regimes for the samples of Brent and WTI crude oil prices before and after the 2008

financial crisis. They found three regimes for both crude oil markets before and after the

crisis.

2 Data and Model

2.1 Data

The data used includes daily crude oil WTI futures (1539 days) and crude oil Brent futures

(1592 days) from January 4, 2010 to December 31, 2015 (Figure 1). For the futures oil prices,

we used the nearest contracts’ prices of WTI. The data is obtained from investing.com, which
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is a global financial portal that offers 27 localized editions in 20 languages. We used the

differential natural logarithmic prices (logarithmic returns).

One crude oil WTI futures or crude oil Brent futures contract is equivalent to 1000 US

barrels (42 000 gallons) of light, sweet crude oil. These contracts are some of the world’s

most liquid oil commodities and are important benchmark for oil markets.

Table 1 shows that the skewness is negative for both WTI and Brent. This negative skew

indicates that the tail on the left side of the probability density function is fatter than that

on the right side, which has already been seen in Figure 1. Similarly, the kurtosis is less than

3 for both series – these series are said to be platykurtic. These distributions produce fewer

and less extreme outliers than do normal distributions.

2.2 Markov Switching Autoregressive Model

The Markov Regime Switching model is used to describe a situation or stochastic process that

determines the change from one regime to another via a Markov chain. In Markov switching

models, the Markov chain is used to model the behavior of a state variable that cannot be

directly observed and determines the regime of the market. The regime of the state variable

should be strongly related to the regime of the economy or market. The economy might be

in a recession regime or a growth regime. In a Markov Regime Switching model, the state

(regime) of the economy (st) cannot be directly observed, although the time series variable

yt can be observed. The state of the market can only be identified with some probability.

At the same time those observations are supposed to be dependent on the properties of the

regime. When the state of the economy in the Markov regime is determined, the next regime

can be expressed as a probability.

The general idea behind this class of RS models is that there is a time series process yt
dependent on an unobservable regime variable st that represents the probability of being in

a particular state of the world (Krolzig, 2000). This can be written as follows:

p(yt|Yt−1;Xt; st) =


f(yt|Yt−1;Xt; θ1) if st = 1
...

f(yt|Yt−1;Xt; θm) if st = m

(1)

where Xt are exogenous variables; and θm is the parameter vector associated with regime m.

In Markov switching models, the regime-generating process is an ergodic Markov chain
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with a finite number of states defined by the transition probabilities (Krolzig, 2000).

pi,j = Pr(st+1 = j|st = i);
m∑
j=1

pi,j = 1 and i, j = {1, . . . ,m} (2)

st follows an ergodic M-state Markov process with an irreducible transition matrix:

P =

p1,1 · · · p1,m
...

. . .
...

pm,1 · · · pm,m

 (3)

In a two-state model, the transition probabilities of moving from one state to the other are

denoted as:

Pr(st+1 = 1|st = 1) = p1,1

Pr(st+1 = 2|st = 1) = p1,2

Pr(st+1 = 1|st = 2) = p2,1 (4)

Pr(st+1 = 2|st = 2) = p2,2

Note that for each pi,j to define a proper probability, it must be nonnegative, and it should

also hold that p11 + p12 = 1 and p21 + p22 = 1 (Franses and van Dijk, 2000).

The probability of which regime is in operation at time t conditional on the information

at time t− 1 only depends only on the statistical inference on st−1:

Pr(st|Yt−1;Xt;St−1) = Pr(st|st−1) (5)

If the probabilities of switching between regimes are known, the ergodic probability of any

state can be calculated. The probability of any observation being in any state is called the

ergodic probability. The ergodic probabilities for a two-state model are given as (Bildirici

et al., 2010):

Pr(st = 1) =
1− p2,2

1− p1,1 − p2,2
, P r(st = 2) =

1− p1,1
1− p1,1 − p2,2

(6)

The Markov switching time series analysis was first implemented by Hamilton (1989) to

analyze business cycles. Hamilton investigated the possibility that macroeconomic variables

fluctuate on a cyclical time scale between calendar time (e.g., month, quarter or another

unit of time) and economic time. The time transformations between economic and calendar

time depend on the economic history of the process such as whether the economy has been
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in a cyclical recession or growth phase. The two main types of Markov switching models

are the Markov switching model of conditional mean (MSM) and the Markov switching

intercept (MSI) model. In the MSM model, the regime switches according to the conditional

mean (µst), while in the MSI model, the regime switches according to the constant (cst).

In addition, the Markov switching intercept and heteroskedasticity (MSIH) Model is a third

type of Markov switching model that has proven to be strong in explaining financial time

series. These three models are denoted as follows:

MSM model : yt − µst = Φ(yt−1 − µst−1) + ut (7)

MSI model : yt − cst = Φ · yt−1 + ut (8)

MSIH model : yt − cst = Φ · yt−1 + ut · σst (9)

where Φ is an autoregressive coefficeint; ut is an unobservable zero-mean white noise vector

process; yt−1 is the lagged value of the dependent variable; and σst is the standard deviation

of the error term conditional on the state variable st.

The regime in MS-AR models is defined as an unobserved state variable affecting the lev-

els or volatility of the distributions of financial asset returns (Perez-Quiros and Timmermann,

2001; Guidolin and Timmermann, 2006). These models also explain the fat tails, periods of

turbulence followed by periods of low volatility, and skewness of many financial series. More-

over, these models can capture nonlinear stylized dynamics of asset returns in a framework

based on linear specifications, or conditionally normal or log-normal distributions, within a

regime (Ang and Timmermann, 2011).

3 Empirical Analysis

We applied autoregressive models with different numbers of regimes (2 or 3) and different

lags (0–4) to the time series of the oil futures logarithmic returns. Taking linearity as our null

hypothesis, and following Davies (1987), we considered a p-value less than 0.05 a statistically

significant rejection of the null hypothesis. We estimated 15 models for crude oil WTI and

14 models for crude oil Brent that show non-linear characteristics.

3.1 Markov Switching Autoregressive Model for Crude Oil WTI

The model that best explains the nonlinearity of crude oil WTI is MSIH(3)-AR(0), which

has the minimum Hannan-Quinnn criterion (HQ) (−5.2666) and Schwarz criterion (SIC)

(−5.2404) from among the models tested. This model has a large log-likelihood ratio statis-

tic (4063.3734) that signifies the maximum likelihood estimate of the transition possibilities
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for the Markov model. Additionally, the MSIH(3)-AR(0) model has the largest value of

the likelihood ratio (LR) statistics (370.1262) which indicates how much more the nonlin-

ear model explains the relation than does the linear model. Of the 15 models that shows

statistically significant nonlinearity, the MSIH(3)-AR(0) is the most powerful one. The

regime switching mechanism in the MSIH model is specified by the intercept (I) and volatil-

ity/heteroskedasticity (H).

Coefficients of the MSIH(3)-AR(0) model for crude oil WTI are shown in Table 3. The

estimation procedure implemented in the “Ox Metrics program” identifies regime 1 (slightly

downward), regime 2 (slightly upward) and regime 3 (sharply downward) of the model. In

many studies, regime 3 is identified as an expansion period with positive coefficients ap-

propriate to the business cycle (Krolzig, 2000; Markov, 2010; Medhioub, 2015; Koy, 2017).

Due to the falling trend across the whole observation period, we have negative coefficients in

regime 1 and regime 3. With negative returns and high volatility, regime 1 is called slightly

downward by Zhang and Zhang (2015), while regime 3 with the highest volatility and abso-

lutely negative returns, is called sharply downward. Regime 2, which has the only positive

coefficient, is called slightly upward.

Transition probability represents the likelihood that the crude oil WTI price return will

stay in the original regime or switch to another regime. According to the matrix of transition

probabilities for crude oil WTI (Table 4), if an observation is in regime 1, the following

observation has a probability of 97.33% of being in regime 1, a probability of 0.85% of being

in regime 2 and a probability of 1.82% of being in regime 3. In other words, if the oil

futures market has been observed to have a slightly downward regime a given day, a low

negative return is expected to be observed on the following day with a probability of 97.33%.

Similarly, the probabilities for regimes 2 and 3 are shown in Table 4. For example, if the

market is observed to be in regime 2, the following day is expected to be in regime 2 with

a probability of 98.75%. There is also a probability of 1.25% that it will be in regime 1 and

essentially 0% probability that it will be in regime 3.

In the six year period studied, the greatest number of observations (728) and the highest

probability (0.47) belong to the slightly downward regime (regime 1). The longest duration

(80 days) is seen in the slightly upward regime (regime 2); if the returns are positive, the

market is expected to stay in the slightly upward regime for 80 days. The smallest number of

observations (306), the lowest probability (0.21), and the shortest duration (24) all belong to

the sharply downward regime (regime 3). In addition, according to the ergodic probabilities

(Table 5), being in regime 1 has the highest probability for any observation at any moment

(0.4709).
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3.2 Markov Switching Autoregressive Model for Crude Oil Brent

The model that best explains the nonlinearity of crude oil Brent is the MSIH(3)-AR(0) which

has the smallest values of the HQ (-5.4687) and SIC (-5.4432), and the largest value of the

LR statistic (400.2764). According to the LR statistic, the model with the most descriptive

power is the MSIH(3)-AR(0) with three regimes.

Coefficients of the MSIH(3)-AR(0) model for crude oil Brent are shown in Table 7. As for

the crude oil WTI futures, regime 1 is the slightly downward regime, regime 2 is the slightly

upward regime, and regime 3 is the sharply downward regime.

As was the case with the transition possibilities for crude oil WTI, the matrix of transition

probabilities for crude oil Brent (Table 8) shows that there is a strong probability that any

given observation will be in the same regime as the observation that immediately preceded it.

For the models of crude oil Brent futures, the greatest number of observations (782) belong

to the slightly downward regime (regime 1). Thus, the probability of the slightly downward

regime (0.49) is the highest. The durations of all regimes are very similar, ranging from 25 to

30 days. The smallest number of observations (291) and, the lowest probability (0.20) belong

to the sharply downward regime (regime 3) that also has the longest duration (30 days). The

ergodic probability of regime 1 (0.4873) is the highest among the three states, a result that

is similar to crude oil WTI futures model.

3.3 Regime Probabilities and Business Cycle Dates

The regime probabilities of the MSIH(3)-AR(0) model for crude oil futures are shown in

Figures 2 and 3. The cycle dates of the models are shown in the tables that follow (Tables 10

and 11). Both the figures and tables indicate that Brent switches more between regime 1 and

regime 2 than does WTI. These switching mechanisms cause the difference in the durations

noted in Tables 4 and 8. In contrast to regime 1 and regime 2, the regime 3 cycle dates are

nearly the same for both the models.

While economic events affect oil market prices, they also affect global demand and sup-

ply. Despite the difficulties in specifying the RS dates in detail, we tried to relate the RS

mechanism to business cycles on the basis of the Markov Switching time series analysis first

applied. If the cycle dates of crude oil futures are considered in relation to the business

cycle, the slightly upward regime (regime 2) of our models is associated with the minimum

world GDP growth which occurred in 2012 and 2013 (2.5%, and 2.48%, respectively).

Following the steady prices between $70 and $80 in the first 11 months of 2010, the last

month of 2010 was a growing period which was observed to be in regime 2. The oil futures

prices in both the second period of 2014 and the whole of 2015 have followed a falling trend

and never reached $100 USD after July 2014. This period of high volatility has been seen in
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regime 1 and regime 3.

4 Conclusion

As extreme price movements have recently been recorded, the interest in predicting oil futures

prices has been renewed. In this study, we found evidence that the behavior of oil futures

prices changes conditional on the state of other related economic variables. The findings indi-

cate that oil prices have a nonlinear pattern involving three regimes. The model which best de-

scribes the oil futures logarithmic returns is the MSIH(3)-AR(0). The regime switching mech-

anism in the MSIH model is specified by the intercept (I) and volatility/heteroskedasticity

(H).

The three regimes that the models identify are the same for the two analyzed time series.

They are: regime 1, slightly downward (with high volatility); regime 2, slightly upward (with

low volatility); and regime 3 sharply downward (with high volatility).

The slightly downward period has the greatest number of observations for both crude

oil WTI futures (728 days) and crude oil Brent futures (782 days). On the other hand, the

sharply downward period has the smallest number of observations for both crude oil WTI

futures (306) and crude oil Brent futures (291). Additionally, the difference in the durations

of the periods is important. In particular, the duration of the slightly upward period is

significantly different between the crude oil WTI and the crude oil Brent futures, 80 days for

crude oil WTI futures and 25 days for crude oil Brent futures. The nonlinear structure of oil

futures prices and the probabilities and durations of the regime switching mechanisms in this

model are important for international investors who invest in oil futures. For instance, if the

market is not too volatile and returns are positive, an investor should expect these returns

for 80 days for crude oil WTI futures, and 20 days for crude oil Brent futures. We need to

specify that there are many economic events and other reasons which are causes of switching

mechanisms, and there is a wide potential study area on this subject. While we consider that

volatility or heteroskedasticity (H) is important in specifying the regime switching mechanism

in modelling returns, modelling the volatility of oil futures markets with the Markov regime

switching GARCH models would be another potential area for study.

References

Ang, A. and Timmermann, A. (2011). Regime Changes and Financial Markets. Working

paper 17182, National Bureau of Economic Research.



32 Econometric Research in Finance • Vol. 2

Baum, C. and Zerilli, P. (2016). Jumps and stochastic volatility in crude oil futures prices

using conditional moments of integrated volatility. Energy Economics, 53(C):175–181.

Bernard, J.-T., Khalaf, L., Kichian, M., and McMahon, S. (2015). The Convenience Yield

and the Informational Content of the Oil Futures Price. The Energy Journal, 36(2):39–46.

Bildirici, M. E., Aykaç Alp, E., Ersin, Ö. Ö., and Bozoklu, Ü. (2010). İktisatta Kullanılan
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Figure 1: Crude Oil Futures Prices, Crude Oil Brent Futures and Differential Natural Loga-
rithmic Prices

(a) Crude Oil WTI Futures
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Figure 2: Regime Probabilities – Crude Oil WTI
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Figure 3: Regime Probabilities – Crude Oil Brent
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Table 1: Descriptive Statistics of Analyzed Variables

WTI BRENT
Mean 84.49617 94.91823
Median 90.80000 105.5400
Maximum 113.9300 126.6500
Minimum 34.73000 42.69000
Std. Dev 19.19545 21.55654
Skewness -0.977078 -0.785413
Kurtosis 2.872541 2.333900

Jarque-Bera 245.9176 186.6795
Probability 0.000000 0.000000

Sum 130039.6 146079.2
Sum Sq. Dev. 566699.5 714684.8

Table 2: Information Criterion Values for Crude Oil WTI

p-value
Model log- AIC HQ SIC LR linearity of the Davies’

likelihood test test
MSI(3)-AR(0) 3991.8353 -5.1779 -5.1650 -5.1432 203.7858 0.0000
MSIH(2)-AR(0) 4045.4444 -5.2529 -5.2451 -5.2320 311.0041 0.0000
MSI(3)-AR(0) 4063.3734 -5.2821 -5.2666 -5.2404 370.1262 0.0000
MSI(3)-AR(1) 3991.1921 -5.1792 -5.1650 -5.1410 202.6508 0.0000
MSIH(2)-AR(1) 4043.0675 -5.2519 -5.2428 -5.2276 306.4016 0.0000
MSIH(3)-AR(1) 4073.5898 -5.2838 -5.2670 -5.2386 367.4462 0.0000
MSI(3)-AR(2) 3982.2975 -5.1764 -5.1609 -5.1347 201.8906 0.0000
MSIH(2)-AR(2) 4033.9452 -5.2490 -5.2386 -5.2211 305.1860 0.0000
MSIH(3)-AR(2) 4071.0222 -5.2826 -5.2645 -5.2339 367.2806 0.0000
MSI(3)-AR(3) 3982.3519 -5.1752 -5.1583 -5.1299 201.9004 0.0000
MSIH(2)-AR(3) 4034.0096 -5.2477 -5.2361 -5.2164 305.2158 0.0000
MSIH(3)-AR(3) 4067.9061 -5.2807 -5.2613 -5.2285 366.9508 0.0000
MSI(3)-AR(4) 3982.6001 -5.1742 -5.1561 -5.1255 202.3419 0.0000
MSIH(2)-AR(4) 4034.0103 -5.2464 -5.2335 -5.2116 305.1623 0.0000
MSIH(3)-AR(4) 4064.7701 -5.2787 -5.2580 -5.2231 366.6819 0.0000
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Table 3: Coefficients for Models of Crude Oil WTI

MSIH(3)-AR(0)
Coefficient Standard Error t-value

Constant (Regime 1) -0.0005 0.0007 -0.7295
Constant (Regime 2) 0.0003 0.0005 0.6868
Constant (Regime 3) -0.0019 0.0019 -0.9940

Standard Error (Regime 1) 0.0169
Standard Error (Regime 2) 0.0104
Standard Error (Regime 3) 0.0317

Table 4: Matrix of Transition Probabilities for Crude Oil WTI

Model Regime Regime 1 Regime 2 Regime 3
MSIH(3)-AR(0) Regime 1 0.9733 0.0085 0.0182

Regime 2 0.0125 0.9875 0.0000
Regime 3 0.0408 0.0000 0.9591

Table 5: Number of Observations for Crude Oil WTI

Model Regime Number Probability Duration
of observations (days)

MSIH(3)-AR(0) 1 727.8 0.4709 37.51
2 499.9 0.3197 79.74
3 306.4 0.2094 24.46



Econometric Research in Finance • Vol. 2 39

Table 6: Information Criterion Values for Crude Oil Brent

p-value
Model log- AIC HQ SIC LR linearity of the Davies’

likelihood test test
MSIH(2)-AR(0) 4328.0040 -5.4468 -5.4392 -5.4265 0,0000
MSIH(3)-AR(0) 4374.2848 -5.4837 -5.4687 -5.4432 400.2764 0,0000
MSI(3)-AR(1) 4267.6265 -5.3644 -5.3505 -5.3272 204.0874 0,0000
MSIH(2)-AR(1) 4330.4120 -5.4485 -5.4397 -5.4248 329.6585 0,0000
MSIH(3)-AR(1) 4373.5604 -5.4850 -5.4687 -5.4411 398.1731 0,0000
MSI(3)-AR(2) 4267.6750 -5.3632 -5.3481 -5.3226 203.6919 0,0000
MSIH(2)-AR(2) 4330.7581 -5.4477 -5.4377 -5.4206 329.8582 0,0000
MSIH(3)-AR(2) 4371.2413 -5.4843 -5.4667 -5.4369 398.3565 0,0000
MSI(3)-AR(3) 4267.7990 -5.3621 -5.3457 -5.3181 202.9672 0,0000
MSIH(2)-AR(3) 4330.7605 -5.4465 -5.4351 -5.4160 328.8901 0,0000
MSIH(3)-AR(3) 4367.9474 -5.4823 -5.4635 -5.4316 397.0194 0,0000
MSI(3)-AR(4) 4268.7489 -5.3620 -5.3444 -5.3146 204.3794 0,0000
MSIH(2)-AR(4) 4030.7984 -5.4452 -5.4327 -5.4114 328.4784 0,0000
MSIH(3)-AR(4) 4364.8448 -5.4806 -5.4605 -5.4264 396.5712 0,0000

Table 7: Coefficients for Models of Crude Oil Brent

MSIH(3)-AR(0)
Coefficient Standard Error t-value

Constant (Regime 1) -0.0003 0.0007 -0.3893
Constant (Regime 2) 0.0003 0.0005 0.7071
Constant (Regime 3) -0.0025 0.0018 -1.3949

Standard Error (Regime 1) 0.0160
Standard Error (Regime 2) 0.0085
Standard Error (Regime 3) 0.0293



40 Econometric Research in Finance • Vol. 2

Table 8: Matrix of Transition Probabilities - Crude Oil Brent

Model Regime Regime 1 Regime 2 Regime 3
MSIH(3)-AR(0) Regime 1 0.9629 0.0262 0.0109

Regime 2 0.0363 0.9595 0.0042
Regime 3 0.0335 0.0002 0.9663

Table 9: Number of Observations for Crude Oil Brent

Model Regime Number Probability Duration
of observations (days)

MSIH(3)-AR(0) 1 781.5 0.4873 26.97
2 518.1 0.3160 24.68
3 291.4 0.1967 29.68
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